求值
-\frac{bc}{a^{2}+b^{2}}
因式分解
-\frac{bc}{a^{2}+b^{2}}
共享
已复制到剪贴板
\frac{a^{2}c}{b\left(a^{2}+b^{2}\right)}-\frac{c}{b}
因式分解 a^{2}b+b^{3}。
\frac{a^{2}c}{b\left(a^{2}+b^{2}\right)}-\frac{c\left(a^{2}+b^{2}\right)}{b\left(a^{2}+b^{2}\right)}
若要对表达式执行加法或减法运算,请重写该表达式,使其分母相同。 b\left(a^{2}+b^{2}\right) 和 b 的最小公倍数是 b\left(a^{2}+b^{2}\right)。 求 \frac{c}{b} 与 \frac{a^{2}+b^{2}}{a^{2}+b^{2}} 的乘积。
\frac{a^{2}c-c\left(a^{2}+b^{2}\right)}{b\left(a^{2}+b^{2}\right)}
由于 \frac{a^{2}c}{b\left(a^{2}+b^{2}\right)} 和 \frac{c\left(a^{2}+b^{2}\right)}{b\left(a^{2}+b^{2}\right)} 具有相同的分母,可通过分子相减来求差。
\frac{a^{2}c-ca^{2}-cb^{2}}{b\left(a^{2}+b^{2}\right)}
完成 a^{2}c-c\left(a^{2}+b^{2}\right) 中的乘法运算。
\frac{-cb^{2}}{b\left(a^{2}+b^{2}\right)}
合并 a^{2}c-ca^{2}-cb^{2} 中的项。
\frac{-bc}{a^{2}+b^{2}}
消去分子和分母中的 b。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}