跳到主要内容
求解 x 的值
Tick mark Image
图表

来自 Web 搜索的类似问题

共享

\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
由于无法定义除以零,因此变量 x 不能等于任意以下值: 3,4。 将公式两边同时乘以 \left(x-4\right)\left(x-3\right) 的最小公倍数 x-4,x-3,x^{2}-7x+12。
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
使用分配律将 x-3 乘以 2。
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
使用分配律将 2x-6 乘以 x。
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
使用分配律将 x-4 乘以 3。
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
合并 -6x 和 3x,得到 -3x。
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
使用分配律将 x-4 乘以 x-3,并组合同类项。
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
使用分配律将 x^{2}-7x+12 乘以 4。
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
合并 2x^{2} 和 4x^{2},得到 6x^{2}。
6x^{2}-31x-12+48=30+5x^{2}-36x
合并 -3x 和 -28x,得到 -31x。
6x^{2}-31x+36=30+5x^{2}-36x
-12 与 48 相加,得到 36。
6x^{2}-31x+36-30=5x^{2}-36x
将方程式两边同时减去 30。
6x^{2}-31x+6=5x^{2}-36x
将 36 减去 30,得到 6。
6x^{2}-31x+6-5x^{2}=-36x
将方程式两边同时减去 5x^{2}。
x^{2}-31x+6=-36x
合并 6x^{2} 和 -5x^{2},得到 x^{2}。
x^{2}-31x+6+36x=0
将 36x 添加到两侧。
x^{2}+5x+6=0
合并 -31x 和 36x,得到 5x。
a+b=5 ab=6
若要解公式,请使用公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) x^{2}+5x+6 因子。 若要查找 a 和 b,请设置要解决的系统。
1,6 2,3
由于 ab 是正数,a 并且 b 具有相同的符号。 由于 a+b 是正数,a 并且 b 都是正数。 列出提供产品 6 的所有此类整数对。
1+6=7 2+3=5
计算每对之和。
a=2 b=3
该解答是总和为 5 的对。
\left(x+2\right)\left(x+3\right)
使用获取的值 \left(x+a\right)\left(x+b\right) 重写因式分解表达式。
x=-2 x=-3
若要找到方程解,请解 x+2=0 和 x+3=0.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
由于无法定义除以零,因此变量 x 不能等于任意以下值: 3,4。 将公式两边同时乘以 \left(x-4\right)\left(x-3\right) 的最小公倍数 x-4,x-3,x^{2}-7x+12。
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
使用分配律将 x-3 乘以 2。
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
使用分配律将 2x-6 乘以 x。
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
使用分配律将 x-4 乘以 3。
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
合并 -6x 和 3x,得到 -3x。
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
使用分配律将 x-4 乘以 x-3,并组合同类项。
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
使用分配律将 x^{2}-7x+12 乘以 4。
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
合并 2x^{2} 和 4x^{2},得到 6x^{2}。
6x^{2}-31x-12+48=30+5x^{2}-36x
合并 -3x 和 -28x,得到 -31x。
6x^{2}-31x+36=30+5x^{2}-36x
-12 与 48 相加,得到 36。
6x^{2}-31x+36-30=5x^{2}-36x
将方程式两边同时减去 30。
6x^{2}-31x+6=5x^{2}-36x
将 36 减去 30,得到 6。
6x^{2}-31x+6-5x^{2}=-36x
将方程式两边同时减去 5x^{2}。
x^{2}-31x+6=-36x
合并 6x^{2} 和 -5x^{2},得到 x^{2}。
x^{2}-31x+6+36x=0
将 36x 添加到两侧。
x^{2}+5x+6=0
合并 -31x 和 36x,得到 5x。
a+b=5 ab=1\times 6=6
要求解公式,请通过分组对左侧进行因式分解。首先,左侧需要重写成 x^{2}+ax+bx+6。 若要查找 a 和 b,请设置要解决的系统。
1,6 2,3
由于 ab 是正数,a 并且 b 具有相同的符号。 由于 a+b 是正数,a 并且 b 都是正数。 列出提供产品 6 的所有此类整数对。
1+6=7 2+3=5
计算每对之和。
a=2 b=3
该解答是总和为 5 的对。
\left(x^{2}+2x\right)+\left(3x+6\right)
将 x^{2}+5x+6 改写为 \left(x^{2}+2x\right)+\left(3x+6\right)。
x\left(x+2\right)+3\left(x+2\right)
将 x 放在第二个组中的第一个和 3 中。
\left(x+2\right)\left(x+3\right)
通过使用分布式属性分解出共同项 x+2。
x=-2 x=-3
若要找到方程解,请解 x+2=0 和 x+3=0.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
由于无法定义除以零,因此变量 x 不能等于任意以下值: 3,4。 将公式两边同时乘以 \left(x-4\right)\left(x-3\right) 的最小公倍数 x-4,x-3,x^{2}-7x+12。
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
使用分配律将 x-3 乘以 2。
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
使用分配律将 2x-6 乘以 x。
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
使用分配律将 x-4 乘以 3。
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
合并 -6x 和 3x,得到 -3x。
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
使用分配律将 x-4 乘以 x-3,并组合同类项。
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
使用分配律将 x^{2}-7x+12 乘以 4。
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
合并 2x^{2} 和 4x^{2},得到 6x^{2}。
6x^{2}-31x-12+48=30+5x^{2}-36x
合并 -3x 和 -28x,得到 -31x。
6x^{2}-31x+36=30+5x^{2}-36x
-12 与 48 相加,得到 36。
6x^{2}-31x+36-30=5x^{2}-36x
将方程式两边同时减去 30。
6x^{2}-31x+6=5x^{2}-36x
将 36 减去 30,得到 6。
6x^{2}-31x+6-5x^{2}=-36x
将方程式两边同时减去 5x^{2}。
x^{2}-31x+6=-36x
合并 6x^{2} 和 -5x^{2},得到 x^{2}。
x^{2}-31x+6+36x=0
将 36x 添加到两侧。
x^{2}+5x+6=0
合并 -31x 和 36x,得到 5x。
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
此公式采用标准形式: ax^{2}+bx+c=0。在二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 中用 1 替换 a,5 替换 b,并用 6 替换 c。
x=\frac{-5±\sqrt{25-4\times 6}}{2}
对 5 进行平方运算。
x=\frac{-5±\sqrt{25-24}}{2}
求 -4 与 6 的乘积。
x=\frac{-5±\sqrt{1}}{2}
将 -24 加上 25。
x=\frac{-5±1}{2}
取 1 的平方根。
x=-\frac{4}{2}
现在 ± 为加号时求公式 x=\frac{-5±1}{2} 的解。 将 1 加上 -5。
x=-2
-4 除以 2。
x=-\frac{6}{2}
现在 ± 为减号时求公式 x=\frac{-5±1}{2} 的解。 将 -5 减去 1。
x=-3
-6 除以 2。
x=-2 x=-3
现已求得方程式的解。
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
由于无法定义除以零,因此变量 x 不能等于任意以下值: 3,4。 将公式两边同时乘以 \left(x-4\right)\left(x-3\right) 的最小公倍数 x-4,x-3,x^{2}-7x+12。
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
使用分配律将 x-3 乘以 2。
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
使用分配律将 2x-6 乘以 x。
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
使用分配律将 x-4 乘以 3。
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
合并 -6x 和 3x,得到 -3x。
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
使用分配律将 x-4 乘以 x-3,并组合同类项。
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
使用分配律将 x^{2}-7x+12 乘以 4。
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
合并 2x^{2} 和 4x^{2},得到 6x^{2}。
6x^{2}-31x-12+48=30+5x^{2}-36x
合并 -3x 和 -28x,得到 -31x。
6x^{2}-31x+36=30+5x^{2}-36x
-12 与 48 相加,得到 36。
6x^{2}-31x+36-5x^{2}=30-36x
将方程式两边同时减去 5x^{2}。
x^{2}-31x+36=30-36x
合并 6x^{2} 和 -5x^{2},得到 x^{2}。
x^{2}-31x+36+36x=30
将 36x 添加到两侧。
x^{2}+5x+36=30
合并 -31x 和 36x,得到 5x。
x^{2}+5x=30-36
将方程式两边同时减去 36。
x^{2}+5x=-6
将 30 减去 36,得到 -6。
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
将 x 项的系数 5 除以 2 得 \frac{5}{2}。然后在等式两边同时加上 \frac{5}{2} 的平方。这一运算步骤让等式的左边成为完全平方形式。
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
对 \frac{5}{2} 进行平方运算,方法是同时对该分数的分子和分母进行平方运算。
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
将 \frac{25}{4} 加上 -6。
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
因数 x^{2}+5x+\frac{25}{4}。一般说来,当 x^{2}+bx+c 是一个平方数时,它始终可以分解为 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
对方程两边同时取平方根。
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
化简。
x=-2 x=-3
将等式的两边同时减去 \frac{5}{2}。