跳到主要内容
求值
Tick mark Image
实部
Tick mark Image

来自 Web 搜索的类似问题

共享

\frac{1\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}+\frac{1-i}{i\left(1+i\right)}
将 \frac{1}{2-i} 的分子和分母同时乘以分母的共轭复数 2+i。
\frac{1\left(2+i\right)}{2^{2}-i^{2}}+\frac{1-i}{i\left(1+i\right)}
使用以下规则可将乘法转换为平方差: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}。
\frac{1\left(2+i\right)}{5}+\frac{1-i}{i\left(1+i\right)}
根据定义,i^{2} 为 -1。 计算分母。
\frac{2+i}{5}+\frac{1-i}{i\left(1+i\right)}
将 1 与 2+i 相乘,得到 2+i。
\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i\left(1+i\right)}
2+i 除以 5 得 \frac{2}{5}+\frac{1}{5}i。
\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i+i^{2}}
求 i 与 1+i 的乘积。
\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i-1}
根据定义,i^{2} 为 -1。
\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{-1+i}
重新排列各项的顺序。
\frac{2}{5}+\frac{1}{5}i-1
1-i 除以 -1+i 得 -1。
\frac{2}{5}-1+\frac{1}{5}i
将实部和虚部分别相减,从 \frac{2}{5}+\frac{1}{5}i 中减去 1。
-\frac{3}{5}+\frac{1}{5}i
将 \frac{2}{5} 减去 1,得到 -\frac{3}{5}。
Re(\frac{1\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}+\frac{1-i}{i\left(1+i\right)})
将 \frac{1}{2-i} 的分子和分母同时乘以分母的共轭复数 2+i。
Re(\frac{1\left(2+i\right)}{2^{2}-i^{2}}+\frac{1-i}{i\left(1+i\right)})
使用以下规则可将乘法转换为平方差: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}。
Re(\frac{1\left(2+i\right)}{5}+\frac{1-i}{i\left(1+i\right)})
根据定义,i^{2} 为 -1。 计算分母。
Re(\frac{2+i}{5}+\frac{1-i}{i\left(1+i\right)})
将 1 与 2+i 相乘,得到 2+i。
Re(\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i\left(1+i\right)})
2+i 除以 5 得 \frac{2}{5}+\frac{1}{5}i。
Re(\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i+i^{2}})
求 i 与 1+i 的乘积。
Re(\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i-1})
根据定义,i^{2} 为 -1。
Re(\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{-1+i})
重新排列各项的顺序。
Re(\frac{2}{5}+\frac{1}{5}i-1)
1-i 除以 -1+i 得 -1。
Re(\frac{2}{5}-1+\frac{1}{5}i)
将实部和虚部分别相减,从 \frac{2}{5}+\frac{1}{5}i 中减去 1。
Re(-\frac{3}{5}+\frac{1}{5}i)
将 \frac{2}{5} 减去 1,得到 -\frac{3}{5}。
-\frac{3}{5}
-\frac{3}{5}+\frac{1}{5}i 的实数部分为 -\frac{3}{5}。