跳到主要内容
求值
Tick mark Image
展开
Tick mark Image

来自 Web 搜索的类似问题

共享

\frac{\left(\frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\right)\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
若要对表达式执行加法或减法运算,请重写该表达式,使其分母相同。 x+2y 和 x-2y 的最小公倍数是 \left(x-2y\right)\left(x+2y\right)。 求 \frac{x-2y}{x+2y} 与 \frac{x-2y}{x-2y} 的乘积。 求 \frac{x+2y}{x-2y} 与 \frac{x+2y}{x+2y} 的乘积。
\frac{\frac{\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
由于 \frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)} 和 \frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)} 具有相同的分母,可通过分子相加来求和。
\frac{\frac{x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
完成 \left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right) 中的乘法运算。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
合并 x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2} 中的项。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(\frac{4xy}{4xy}+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
若要对表达式执行加法或减法运算,请重写该表达式,使其分母相同。 求 1 与 \frac{4xy}{4xy} 的乘积。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\times \frac{4xy+x^{2}+4y^{2}}{4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
由于 \frac{4xy}{4xy} 和 \frac{x^{2}+4y^{2}}{4xy} 具有相同的分母,可通过分子相加来求和。
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)} 乘以 \frac{4xy+x^{2}+4y^{2}}{4xy} 的计算方法是,将两数分子与分子相乘得到分子,分母与分母相乘得到分母。
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy}}
将 \frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right) 化为简分数。
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)\times 2xy}{\left(x-2y\right)\left(x+2y\right)\times 4xy\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} 除以 \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} 的计算方法是用 \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} 乘以 \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} 的倒数。
\frac{\left(2x^{2}+8y^{2}\right)\left(x^{2}+4xy+4y^{2}\right)}{2\left(x-2y\right)\left(x+2y\right)\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
消去分子和分母中的 2xy。
\frac{2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}{2x\left(x-2y\right)\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}
将尚未因式分解的表达式分解因式。
\frac{1}{x\left(x-2y\right)}
消去分子和分母中的 2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)。
\frac{1}{x^{2}-2xy}
展开表达式。
\frac{\left(\frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\right)\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
若要对表达式执行加法或减法运算,请重写该表达式,使其分母相同。 x+2y 和 x-2y 的最小公倍数是 \left(x-2y\right)\left(x+2y\right)。 求 \frac{x-2y}{x+2y} 与 \frac{x-2y}{x-2y} 的乘积。 求 \frac{x+2y}{x-2y} 与 \frac{x+2y}{x+2y} 的乘积。
\frac{\frac{\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
由于 \frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)} 和 \frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)} 具有相同的分母,可通过分子相加来求和。
\frac{\frac{x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
完成 \left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right) 中的乘法运算。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
合并 x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2} 中的项。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(\frac{4xy}{4xy}+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
若要对表达式执行加法或减法运算,请重写该表达式,使其分母相同。 求 1 与 \frac{4xy}{4xy} 的乘积。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\times \frac{4xy+x^{2}+4y^{2}}{4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
由于 \frac{4xy}{4xy} 和 \frac{x^{2}+4y^{2}}{4xy} 具有相同的分母,可通过分子相加来求和。
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)} 乘以 \frac{4xy+x^{2}+4y^{2}}{4xy} 的计算方法是,将两数分子与分子相乘得到分子,分母与分母相乘得到分母。
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy}}
将 \frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right) 化为简分数。
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)\times 2xy}{\left(x-2y\right)\left(x+2y\right)\times 4xy\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} 除以 \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} 的计算方法是用 \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} 乘以 \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} 的倒数。
\frac{\left(2x^{2}+8y^{2}\right)\left(x^{2}+4xy+4y^{2}\right)}{2\left(x-2y\right)\left(x+2y\right)\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
消去分子和分母中的 2xy。
\frac{2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}{2x\left(x-2y\right)\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}
将尚未因式分解的表达式分解因式。
\frac{1}{x\left(x-2y\right)}
消去分子和分母中的 2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)。
\frac{1}{x^{2}-2xy}
展开表达式。