求值
\frac{1}{x\left(x-2y\right)}
展开
\frac{1}{x\left(x-2y\right)}
共享
已复制到剪贴板
\frac{\left(\frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\right)\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
若要对表达式执行加法或减法运算,请重写该表达式,使其分母相同。 x+2y 和 x-2y 的最小公倍数是 \left(x-2y\right)\left(x+2y\right)。 求 \frac{x-2y}{x+2y} 与 \frac{x-2y}{x-2y} 的乘积。 求 \frac{x+2y}{x-2y} 与 \frac{x+2y}{x+2y} 的乘积。
\frac{\frac{\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
由于 \frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)} 和 \frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)} 具有相同的分母,可通过分子相加来求和。
\frac{\frac{x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
完成 \left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right) 中的乘法运算。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
合并 x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2} 中的项。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(\frac{4xy}{4xy}+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
若要对表达式执行加法或减法运算,请重写该表达式,使其分母相同。 求 1 与 \frac{4xy}{4xy} 的乘积。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\times \frac{4xy+x^{2}+4y^{2}}{4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
由于 \frac{4xy}{4xy} 和 \frac{x^{2}+4y^{2}}{4xy} 具有相同的分母,可通过分子相加来求和。
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)} 乘以 \frac{4xy+x^{2}+4y^{2}}{4xy} 的计算方法是,将两数分子与分子相乘得到分子,分母与分母相乘得到分母。
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy}}
将 \frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right) 化为简分数。
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)\times 2xy}{\left(x-2y\right)\left(x+2y\right)\times 4xy\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} 除以 \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} 的计算方法是用 \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} 乘以 \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} 的倒数。
\frac{\left(2x^{2}+8y^{2}\right)\left(x^{2}+4xy+4y^{2}\right)}{2\left(x-2y\right)\left(x+2y\right)\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
消去分子和分母中的 2xy。
\frac{2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}{2x\left(x-2y\right)\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}
将尚未因式分解的表达式分解因式。
\frac{1}{x\left(x-2y\right)}
消去分子和分母中的 2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)。
\frac{1}{x^{2}-2xy}
展开表达式。
\frac{\left(\frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\right)\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
若要对表达式执行加法或减法运算,请重写该表达式,使其分母相同。 x+2y 和 x-2y 的最小公倍数是 \left(x-2y\right)\left(x+2y\right)。 求 \frac{x-2y}{x+2y} 与 \frac{x-2y}{x-2y} 的乘积。 求 \frac{x+2y}{x-2y} 与 \frac{x+2y}{x+2y} 的乘积。
\frac{\frac{\left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
由于 \frac{\left(x-2y\right)\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)} 和 \frac{\left(x+2y\right)\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)} 具有相同的分母,可通过分子相加来求和。
\frac{\frac{x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
完成 \left(x-2y\right)\left(x-2y\right)+\left(x+2y\right)\left(x+2y\right) 中的乘法运算。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(1+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
合并 x^{2}-2xy-2xy+4y^{2}+x^{2}+2xy+2xy+4y^{2} 中的项。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\left(\frac{4xy}{4xy}+\frac{x^{2}+4y^{2}}{4xy}\right)}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
若要对表达式执行加法或减法运算,请重写该表达式,使其分母相同。 求 1 与 \frac{4xy}{4xy} 的乘积。
\frac{\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)}\times \frac{4xy+x^{2}+4y^{2}}{4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
由于 \frac{4xy}{4xy} 和 \frac{x^{2}+4y^{2}}{4xy} 具有相同的分母,可通过分子相加来求和。
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right)}
\frac{2x^{2}+8y^{2}}{\left(x-2y\right)\left(x+2y\right)} 乘以 \frac{4xy+x^{2}+4y^{2}}{4xy} 的计算方法是,将两数分子与分子相乘得到分子,分母与分母相乘得到分母。
\frac{\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy}}{\frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy}}
将 \frac{x^{2}+4y^{2}}{2xy}\left(x^{2}+2xy\right) 化为简分数。
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)\times 2xy}{\left(x-2y\right)\left(x+2y\right)\times 4xy\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
\frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} 除以 \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} 的计算方法是用 \frac{\left(2x^{2}+8y^{2}\right)\left(4xy+x^{2}+4y^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4xy} 乘以 \frac{\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}{2xy} 的倒数。
\frac{\left(2x^{2}+8y^{2}\right)\left(x^{2}+4xy+4y^{2}\right)}{2\left(x-2y\right)\left(x+2y\right)\left(x^{2}+4y^{2}\right)\left(x^{2}+2xy\right)}
消去分子和分母中的 2xy。
\frac{2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}{2x\left(x-2y\right)\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)}
将尚未因式分解的表达式分解因式。
\frac{1}{x\left(x-2y\right)}
消去分子和分母中的 2\left(x+2y\right)^{2}\left(x^{2}+4y^{2}\right)。
\frac{1}{x^{2}-2xy}
展开表达式。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}