求解 r 的值
\left\{\begin{matrix}r=\frac{x}{\cos(t\omega )}\text{, }&\left(\nexists n_{1}\in \mathrm{Z}\text{ : }\omega =\frac{\pi n_{1}}{t}+\frac{\pi }{2t}\text{ and }x\neq 0\right)\text{ or }\left(t=0\text{ and }x\neq 0\right)\\r\neq 0\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }n_{1}=\frac{t\omega }{\pi }-\frac{1}{2}\text{, }not(t=0)\text{ and }t\neq 0\text{ and }x=0\end{matrix}\right.
测验
Trigonometry
5 道与此类似的题目:
\cos \omega t = \frac { x } { r } . \quad \sin \omega t = \frac { y } { r }
共享
已复制到剪贴板
r\cos(\omega t)=x
由于无法定义除以零,因此变量 r 不能等于 0。 将方程式的两边同时乘以 r。
\cos(t\omega )r=x
该公式采用标准形式。
\frac{\cos(t\omega )r}{\cos(t\omega )}=\frac{x}{\cos(t\omega )}
两边同时除以 \cos(\omega t)。
r=\frac{x}{\cos(t\omega )}
除以 \cos(\omega t) 是乘以 \cos(\omega t) 的逆运算。
r=\frac{x}{\cos(t\omega )}\text{, }r\neq 0
变量 r 不能等于 0。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}