Asosiy tarkibga oʻtish
Microsoft
|
Math Solver
Yechish
Amaliyot
Oʻynash
Mavzular
Algebradan oldingi
Oʻrtacha
& Usuli
Eng katta umumiy omil
Eng kam umumiy koʻphad
Operatsiyalar tartibi
Kasrlar
Aralash kasrlar
Prime Faktorizatsiya
Eksponentlar
Radikallar
Algebra
Shartlar kabi birlashtiring
O'zgaruvchi uchun yechish
Faktor
Kengaytirish
Kasrlarni baholash
Chiziqli tenglamalar
Kvadrat tenglamalar
Tengsizliklar
Tenglamalar sistemalari
Matrisalar
Trigonometriya
Soddalashtirish
Baholash
Grafiklar
Tenglamalarni yechish
Hisoblash
Derivatsiyalar
Integrallar
Chegaralar
Algebra kirishlari
Trigonometriya kirishlari
Hisoblash kirishlari
Matritsa kirishlari
Yechish
Amaliyot
Oʻynash
Mavzular
Algebradan oldingi
Oʻrtacha
& Usuli
Eng katta umumiy omil
Eng kam umumiy koʻphad
Operatsiyalar tartibi
Kasrlar
Aralash kasrlar
Prime Faktorizatsiya
Eksponentlar
Radikallar
Algebra
Shartlar kabi birlashtiring
O'zgaruvchi uchun yechish
Faktor
Kengaytirish
Kasrlarni baholash
Chiziqli tenglamalar
Kvadrat tenglamalar
Tengsizliklar
Tenglamalar sistemalari
Matrisalar
Trigonometriya
Soddalashtirish
Baholash
Grafiklar
Tenglamalarni yechish
Hisoblash
Derivatsiyalar
Integrallar
Chegaralar
Algebra kirishlari
Trigonometriya kirishlari
Hisoblash kirishlari
Matritsa kirishlari
Asosiy
algebra
trigonometriya
hisoblash
Statistika
matrisalar
Harflar
x uchun yechish
x=\pi n_{1}+\arctan(2)\text{, }n_{1}\in \mathrm{Z}
x=\pi n_{2}+\pi -\arctan(2)\text{, }n_{2}\in \mathrm{Z}
Grafik
Ikkala tarafni 2D formatda diagrammada ko‘rsatish
2D diagrammada ko‘rsatish
Viktorina
Trigonometry
{ \tan ( x ) } ^ {2} = 4
Veb-qidiruvdagi o'xshash muammolar
How do you find the derivative of \displaystyle{\left({1}-{\tan{{x}}}\right)}^{{2}} ?
https://socratic.org/questions/how-do-you-find-the-derivative-of-1-tanx-2
Derivative of \displaystyle{\left({1}-{\tan{{x}}}\right)}^{{2}} is \displaystyle-{2}{{\sec}^{{2}}{x}}+{2}{\tan{{x}}}{{\sec}^{{2}}{x}} Explanation: We can use Chain rule here. Let \displaystyle{f{{\left({x}\right)}}}={\left({1}-{\tan{{x}}}\right)}^{{2}} ...
How do you multiply and simplify \displaystyle{\left({1}+{\tan{{x}}}\right)}^{{2}} ?
https://socratic.org/questions/how-do-you-multiply-and-simplify-1-tanx-2
see below Explanation: \displaystyle{\left({1}+{\tan{{x}}}\right)}^{{2}}={\left({1}+{\tan{{x}}}\right)}{\left({1}+{\tan{{x}}}\right)} ---> FOIL \displaystyle={1}+{\tan{{x}}}+{\tan{{x}}}+{{\tan}^{{2}}{x}} ...
How to integrate (x+\tan x)^2
https://www.quora.com/How-do-I-integrate-x-tan-x-2
Open the brackets. You then have three separate integrals. The first \int x^2dx is simple and equal to \frac {x^3}{3}. The second \int\tan^2xdx is also simple if you remember that \frac {d (\tan x)}{dx}=1+\tan^{2}x ...
Deducing the series expansion of \arctan(x^2) via the series expansion of \arctan(x) at x=0
https://math.stackexchange.com/questions/1652236/deducing-the-series-expansion-of-arctanx2-via-the-series-expansion-of-ar
This approach is perfectly valid. When we have a series \sum_{n=0}^\infty a_nx^n then replacing x\mapsto x^2 we get \sum_{n=0}^\infty a_nx^{2n}=\sum_{n=0}^\infty b_nx^n which is a power ...
\displaystyle{{\tan}^{{2}}{\left({x}\right)}}={0} How can you solve for \displaystyle{x} ?
https://socratic.org/questions/tan-2-x-0-how-can-you-solve-for-x
\displaystyle{x}={k}\pi,{k}\in{Z} Explanation: \displaystyle{{\tan}^{{2}}{x}}={0}\Rightarrow{\left({\tan{{x}}}\right)}^{{2}}={0}\Rightarrow{\tan{{x}}}={0}\Rightarrow{\sin{{x}}}={0} \displaystyle\Rightarrow{x}={k}\pi,{k}\in{Z}
How many solutions does a trigonometric function have 0\le x \le 2\pi?
https://math.stackexchange.com/questions/2118471/how-many-solutions-does-a-trigonometric-function-have-0-le-x-le-2-pi
I do one, you do the other: \tan^22x=1\iff \tan 2x=\pm1\iff 2x=\pm\frac\pi4+k\pi\;,\;\;k\in\Bbb Z\iff \iff x=\pm\frac\pi8+k\frac\pi2\;,\;\;k\in\Bbb Z Hint for the other: \sin3x=-\frac14\iff3x=\arcsin\left(-\frac14\right)+2k\pi\ldots\ldots\text{etc.}
Ko'proq Elementlar
Baham ko'rish
Nusxa olish
Klipbordga nusxa olish
O'xshash muammolar
\cos ( 3x + \pi ) = 0.5
\sin ( x ) = 1
\sin ( x ) - cos ( x ) = 0
\sin ( x ) + 2 = 3
{ \tan ( x ) } ^ {2} = 4
Yuqoriga qaytish