Asosiy tarkibga oʻtish
Microsoft
|
Math Solver
Yechish
Amaliyot
Oʻynash
Mavzular
Algebradan oldingi
Oʻrtacha
& Usuli
Eng katta umumiy omil
Eng kam umumiy koʻphad
Operatsiyalar tartibi
Kasrlar
Aralash kasrlar
Prime Faktorizatsiya
Eksponentlar
Radikallar
Algebra
Shartlar kabi birlashtiring
O'zgaruvchi uchun yechish
Faktor
Kengaytirish
Kasrlarni baholash
Chiziqli tenglamalar
Kvadrat tenglamalar
Tengsizliklar
Tenglamalar sistemalari
Matrisalar
Trigonometriya
Soddalashtirish
Baholash
Grafiklar
Tenglamalarni yechish
Hisoblash
Derivatsiyalar
Integrallar
Chegaralar
Algebra kirishlari
Trigonometriya kirishlari
Hisoblash kirishlari
Matritsa kirishlari
Yechish
Amaliyot
Oʻynash
Mavzular
Algebradan oldingi
Oʻrtacha
& Usuli
Eng katta umumiy omil
Eng kam umumiy koʻphad
Operatsiyalar tartibi
Kasrlar
Aralash kasrlar
Prime Faktorizatsiya
Eksponentlar
Radikallar
Algebra
Shartlar kabi birlashtiring
O'zgaruvchi uchun yechish
Faktor
Kengaytirish
Kasrlarni baholash
Chiziqli tenglamalar
Kvadrat tenglamalar
Tengsizliklar
Tenglamalar sistemalari
Matrisalar
Trigonometriya
Soddalashtirish
Baholash
Grafiklar
Tenglamalarni yechish
Hisoblash
Derivatsiyalar
Integrallar
Chegaralar
Algebra kirishlari
Trigonometriya kirishlari
Hisoblash kirishlari
Matritsa kirishlari
Asosiy
algebra
trigonometriya
hisoblash
Statistika
matrisalar
Harflar
x uchun yechish
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
Grafik
Ikkala tarafni 2D formatda diagrammada ko‘rsatish
2D diagrammada ko‘rsatish
Viktorina
Trigonometry
\sin ( x ) - cos ( x ) = 0
Veb-qidiruvdagi o'xshash muammolar
Solve \displaystyle{\sin{{x}}}-{\cos{{x}}}={0} ?
https://socratic.org/questions/58f66b0eb72cff6d065f28c0
\displaystyle{x}=\frac{\pi}{{4}}+{n}\pi Explanation: We have: \displaystyle{\sin{{x}}}-{\cos{{x}}}={0} Which we can rearrange as follows: \displaystyle\therefore{\sin{{x}}}={\cos{{x}}} ...
I confused with trigonometry. \sin x - \cos x = 1
https://math.stackexchange.com/q/2837121
\frac{1}{\sqrt2}\sin{x}-\frac{1}{\sqrt2}\cos{x}=\frac{1}{\sqrt2} or \sin\left(x-45^{\circ}\right)=\sin45^{\circ}, which gives x-45^{\circ}=45^{\circ}+360^{\circ}k, where k is an integer ...
How do you solve \displaystyle{\sin{{2}}}{x}-{\cos{{x}}}={0} ?
https://socratic.org/questions/how-do-you-solve-sin-2x-cos-x-0
Use the important double angle identity \displaystyle{\sin{{2}}}{x}={2}{\sin{{x}}}{\cos{{x}}} to start the solving process. Explanation: \displaystyle{2}{\sin{{x}}}{\cos{{x}}}-{\cos{{x}}}={0} ...
How to solve \sin 3x - \cos x = 0
https://www.quora.com/How-do-I-solve-sin-3x-cos-x-0
\begin{align} &\ \ \sin 3x - \cos x = 0 \\ \Leftrightarrow &\ \ \sin 3x - \sin \left( \dfrac{\pi}{2}-x \right) = 0 \\ \Leftrightarrow &\ \ 2 \cos\dfrac{3x + \left( \frac{\pi}{2}-x \right)}{2} \sin\dfrac{3x - \left( \frac{\pi}{2}-x \right)}{2} = 0 \\ \Leftrightarrow &\ \ 2 \cos \dfrac{2x + \frac{\pi}{2}}{2} \sin \dfrac{4x - \frac{\pi}{2}}{2} = 0 \\ \Leftrightarrow &\ \ \dfrac{2x + \frac{\pi}{2}}{2} = \dfrac{\pi}{2} + k\pi, k \in \mathbb{Z} \text{ or } \dfrac{4x - \frac{\pi}{2}}{2} = k\pi, k \in \mathbb{Z} \\ \Leftrightarrow &\ \ x = \dfrac{\pi}{4} + k\pi, k \in \mathbb{Z} \text{ or } x = \dfrac{\pi}{8} + \dfrac{k\pi}{2}, k \in \mathbb{Z} \end{align}
Find the general solution to \sin(4x)-\cos(x)=0 [closed]
https://math.stackexchange.com/questions/1735307/find-the-general-solution-to-sin4x-cosx-0
\sin(4x)−\cos(x)=0 2\sin(2x)\cos(2x)-\cos(x)=0 4\sin(x)\cos(x)(1-2\sin^2(x))-\cos(x)=0 One possible solution is \cos(x)=0 4\sin(x)(1-2\sin^2(x))=1 8\sin^3(x)-4\sin(x)+1=0 Now, let \sin(x)=m ...
Prove that \sin x - x\cos x = 0 has only one solution in [-\frac{\pi}{2}, \frac{\pi}{2}]
https://math.stackexchange.com/q/1355080/166535
Let f(x)=\sin x-x\cos x. You have f'(x)=x\sin x. Since \sin x has the same sign as x for x\in[-\pi/2,\pi/2], we know that f'(x)\geq0 in this interval and f'(x)>0 for x\in[-\pi/2,\pi/2]\setminus\{0\} ...
Ko'proq Elementlar
Baham ko'rish
Nusxa olish
Klipbordga nusxa olish
O'xshash muammolar
\cos ( 3x + \pi ) = 0.5
\sin ( x ) = 1
\sin ( x ) - cos ( x ) = 0
\sin ( x ) + 2 = 3
{ \tan ( x ) } ^ {2} = 4
Yuqoriga qaytish