Ana içeriğe geç
Çarpanlara Ayır
Tick mark Image
Hesapla
Tick mark Image
Grafik

Web Aramasından Benzer Problemler

Paylaş

a+b=-8 ab=1\times 15=15
İfadeyi gruplandırarak çarpanlarına ayırın. Öncelikle ifadenin x^{2}+ax+bx+15 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
-1,-15 -3,-5
ab pozitif olduğundan a ve b aynı işarete sahip. a+b negatif olduğundan a ve b her ikisi de negatiftir. Çarpımı 15 olan tam sayı çiftlerini listeleyin.
-1-15=-16 -3-5=-8
Her çiftin toplamını hesaplayın.
a=-5 b=-3
Çözüm, -8 toplamını veren çifttir.
\left(x^{2}-5x\right)+\left(-3x+15\right)
x^{2}-8x+15 ifadesini \left(x^{2}-5x\right)+\left(-3x+15\right) olarak yeniden yazın.
x\left(x-5\right)-3\left(x-5\right)
İkinci gruptaki ilk ve -3 x çarpanlarına ayırın.
\left(x-5\right)\left(x-3\right)
Dağılma özelliği kullanarak x-5 ortak terimi parantezine alın.
x^{2}-8x+15=0
İkinci dereceden polinomsal ifadeler ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) dönüşümü kullanılarak çarpanlarına ayrılabilir. Burada x_{1} ve x_{2} ikinci dereceden ax^{2}+bx+c=0 denkleminin çözümleridir.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
-8 sayısının karesi.
x=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
-4 ile 15 sayısını çarpın.
x=\frac{-\left(-8\right)±\sqrt{4}}{2}
-60 ile 64 sayısını toplayın.
x=\frac{-\left(-8\right)±2}{2}
4 sayısının karekökünü alın.
x=\frac{8±2}{2}
-8 sayısının tersi: 8.
x=\frac{10}{2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{8±2}{2} denklemini çözün. 2 ile 8 sayısını toplayın.
x=5
10 sayısını 2 ile bölün.
x=\frac{6}{2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{8±2}{2} denklemini çözün. 2 sayısını 8 sayısından çıkarın.
x=3
6 sayısını 2 ile bölün.
x^{2}-8x+15=\left(x-5\right)\left(x-3\right)
Özgün ifadeyi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) kullanarak çarpanlarına ayırın. 5 yerine x_{1}, 3 yerine ise x_{2} koyun.