Ana içeriğe geç
Çarpanlara Ayır
Tick mark Image
Hesapla
Tick mark Image
Grafik

Web Aramasından Benzer Problemler

Paylaş

a+b=-11 ab=1\left(-60\right)=-60
İfadeyi gruplandırarak çarpanlarına ayırın. Öncelikle ifadenin x^{2}+ax+bx-60 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
ab negatif olduğundan a ve b ters işaretlere sahip. a+b negatif olduğundan, negatif sayı sıfırdan büyük bir mutlak değer içeriyor. Çarpımı -60 olan tam sayı çiftlerini listeleyin.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Her çiftin toplamını hesaplayın.
a=-15 b=4
Çözüm, -11 toplamını veren çifttir.
\left(x^{2}-15x\right)+\left(4x-60\right)
x^{2}-11x-60 ifadesini \left(x^{2}-15x\right)+\left(4x-60\right) olarak yeniden yazın.
x\left(x-15\right)+4\left(x-15\right)
İkinci gruptaki ilk ve 4 x çarpanlarına ayırın.
\left(x-15\right)\left(x+4\right)
Dağılma özelliği kullanarak x-15 ortak terimi parantezine alın.
x^{2}-11x-60=0
İkinci dereceden polinomsal ifadeler ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) dönüşümü kullanılarak çarpanlarına ayrılabilir. Burada x_{1} ve x_{2} ikinci dereceden ax^{2}+bx+c=0 denkleminin çözümleridir.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-60\right)}}{2}
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-60\right)}}{2}
-11 sayısının karesi.
x=\frac{-\left(-11\right)±\sqrt{121+240}}{2}
-4 ile -60 sayısını çarpın.
x=\frac{-\left(-11\right)±\sqrt{361}}{2}
240 ile 121 sayısını toplayın.
x=\frac{-\left(-11\right)±19}{2}
361 sayısının karekökünü alın.
x=\frac{11±19}{2}
-11 sayısının tersi: 11.
x=\frac{30}{2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{11±19}{2} denklemini çözün. 19 ile 11 sayısını toplayın.
x=15
30 sayısını 2 ile bölün.
x=-\frac{8}{2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{11±19}{2} denklemini çözün. 19 sayısını 11 sayısından çıkarın.
x=-4
-8 sayısını 2 ile bölün.
x^{2}-11x-60=\left(x-15\right)\left(x-\left(-4\right)\right)
Özgün ifadeyi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) kullanarak çarpanlarına ayırın. 15 yerine x_{1}, -4 yerine ise x_{2} koyun.
x^{2}-11x-60=\left(x-15\right)\left(x+4\right)
p-\left(-q\right) biçimindeki tüm ifadeleri p+q biçiminde olacak şekilde sadeleştirin.