Ana içeriğe geç
Çarpanlara Ayır
Tick mark Image
Hesapla
Tick mark Image
Grafik

Web Aramasından Benzer Problemler

Paylaş

a+b=-10 ab=1\times 16=16
İfadeyi gruplandırarak çarpanlarına ayırın. Öncelikle ifadenin x^{2}+ax+bx+16 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
-1,-16 -2,-8 -4,-4
ab pozitif olduğundan a ve b aynı işarete sahip. a+b negatif olduğundan a ve b her ikisi de negatiftir. Çarpımı 16 olan tam sayı çiftlerini listeleyin.
-1-16=-17 -2-8=-10 -4-4=-8
Her çiftin toplamını hesaplayın.
a=-8 b=-2
Çözüm, -10 toplamını veren çifttir.
\left(x^{2}-8x\right)+\left(-2x+16\right)
x^{2}-10x+16 ifadesini \left(x^{2}-8x\right)+\left(-2x+16\right) olarak yeniden yazın.
x\left(x-8\right)-2\left(x-8\right)
İkinci gruptaki ilk ve -2 x çarpanlarına ayırın.
\left(x-8\right)\left(x-2\right)
Dağılma özelliği kullanarak x-8 ortak terimi parantezine alın.
x^{2}-10x+16=0
İkinci dereceden polinomsal ifadeler ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) dönüşümü kullanılarak çarpanlarına ayrılabilir. Burada x_{1} ve x_{2} ikinci dereceden ax^{2}+bx+c=0 denkleminin çözümleridir.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 16}}{2}
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 16}}{2}
-10 sayısının karesi.
x=\frac{-\left(-10\right)±\sqrt{100-64}}{2}
-4 ile 16 sayısını çarpın.
x=\frac{-\left(-10\right)±\sqrt{36}}{2}
-64 ile 100 sayısını toplayın.
x=\frac{-\left(-10\right)±6}{2}
36 sayısının karekökünü alın.
x=\frac{10±6}{2}
-10 sayısının tersi: 10.
x=\frac{16}{2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{10±6}{2} denklemini çözün. 6 ile 10 sayısını toplayın.
x=8
16 sayısını 2 ile bölün.
x=\frac{4}{2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{10±6}{2} denklemini çözün. 6 sayısını 10 sayısından çıkarın.
x=2
4 sayısını 2 ile bölün.
x^{2}-10x+16=\left(x-8\right)\left(x-2\right)
Özgün ifadeyi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) kullanarak çarpanlarına ayırın. 8 yerine x_{1}, 2 yerine ise x_{2} koyun.