Ana içeriğe geç
x için çözün
Tick mark Image
Grafik

Web Aramasından Benzer Problemler

Paylaş

a+b=6 ab=-7
Denklemi çözmek için x^{2}+6x-7 formül x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) 'ni kullanarak faktörü yapın. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
a=-1 b=7
ab negatif olduğundan a ve b ters işaretlere sahip. a+b pozitif olduğundan, pozitif sayı negatif boyuttan daha büyük mutlak değer içeriyor. Bu tür bir çift sistem çözümüdür.
\left(x-1\right)\left(x+7\right)
Alınan değerleri kullanarak \left(x+a\right)\left(x+b\right), bu ifadeyi yeniden yazın.
x=1 x=-7
Denklem çözümlerini bulmak için x-1=0 ve x+7=0 çözün.
a+b=6 ab=1\left(-7\right)=-7
Denklemi çözmek için sol tarafı gruplandırarak çarpanlarına ayırın. Öncelikle sol tarafın x^{2}+ax+bx-7 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
a=-1 b=7
ab negatif olduğundan a ve b ters işaretlere sahip. a+b pozitif olduğundan, pozitif sayı negatif boyuttan daha büyük mutlak değer içeriyor. Bu tür bir çift sistem çözümüdür.
\left(x^{2}-x\right)+\left(7x-7\right)
x^{2}+6x-7 ifadesini \left(x^{2}-x\right)+\left(7x-7\right) olarak yeniden yazın.
x\left(x-1\right)+7\left(x-1\right)
İkinci gruptaki ilk ve 7 x çarpanlarına ayırın.
\left(x-1\right)\left(x+7\right)
Dağılma özelliği kullanarak x-1 ortak terimi parantezine alın.
x=1 x=-7
Denklem çözümlerini bulmak için x-1=0 ve x+7=0 çözün.
x^{2}+6x-7=0
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-6±\sqrt{6^{2}-4\left(-7\right)}}{2}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden denklem formülünde a yerine 1, b yerine 6 ve c yerine -7 değerini koyarak çözün.
x=\frac{-6±\sqrt{36-4\left(-7\right)}}{2}
6 sayısının karesi.
x=\frac{-6±\sqrt{36+28}}{2}
-4 ile -7 sayısını çarpın.
x=\frac{-6±\sqrt{64}}{2}
28 ile 36 sayısını toplayın.
x=\frac{-6±8}{2}
64 sayısının karekökünü alın.
x=\frac{2}{2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{-6±8}{2} denklemini çözün. 8 ile -6 sayısını toplayın.
x=1
2 sayısını 2 ile bölün.
x=-\frac{14}{2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{-6±8}{2} denklemini çözün. 8 sayısını -6 sayısından çıkarın.
x=-7
-14 sayısını 2 ile bölün.
x=1 x=-7
Denklem çözüldü.
x^{2}+6x-7=0
Buna benzer karesel denklemler, kareyi tamamlayarak çözülebilir. Kareyi tamamlamak için denklemin x^{2}+bx=c biçiminde olması gerekir.
x^{2}+6x-7-\left(-7\right)=-\left(-7\right)
Denklemin her iki tarafına 7 ekleyin.
x^{2}+6x=-\left(-7\right)
-7 kendisinden çıkarıldığında 0 kalır.
x^{2}+6x=7
-7 sayısını 0 sayısından çıkarın.
x^{2}+6x+3^{2}=7+3^{2}
x teriminin katsayısı olan 6 sayısını 2 değerine bölerek 3 sonucunu elde edin. Sonra, denklemin her iki tarafına 3 sayısının karesini ekleyin. Bu adım, denklemin sol tarafının tam kare olmasını sağlar.
x^{2}+6x+9=7+9
3 sayısının karesi.
x^{2}+6x+9=16
9 ile 7 sayısını toplayın.
\left(x+3\right)^{2}=16
Faktör x^{2}+6x+9. Genel olarak, x^{2}+bx+c bir kare olduğunda, her zaman kare olarak \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{16}
Denklemin her iki tarafının kare kökünü alın.
x+3=4 x+3=-4
Sadeleştirin.
x=1 x=-7
Denklemin her iki tarafından 3 çıkarın.