x için çözün
x=-6
Grafik
Paylaş
Panoya kopyalandı
a+b=12 ab=36
Denklemi çözmek için x^{2}+12x+36 formül x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) 'ni kullanarak faktörü yapın. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
1,36 2,18 3,12 4,9 6,6
ab pozitif olduğundan a ve b aynı işarete sahip. a+b pozitif olduğundan a ve b her ikisi de pozitif. Çarpımı 36 olan tam sayı çiftlerini listeleyin.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Her çiftin toplamını hesaplayın.
a=6 b=6
Çözüm, 12 toplamını veren çifttir.
\left(x+6\right)\left(x+6\right)
Alınan değerleri kullanarak \left(x+a\right)\left(x+b\right), bu ifadeyi yeniden yazın.
\left(x+6\right)^{2}
İki terimli kare olarak yazın.
x=-6
Denklemin çözümünü bulmak için x+6=0 ifadesini çözün.
a+b=12 ab=1\times 36=36
Denklemi çözmek için sol tarafı gruplandırarak çarpanlarına ayırın. Öncelikle sol tarafın x^{2}+ax+bx+36 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
1,36 2,18 3,12 4,9 6,6
ab pozitif olduğundan a ve b aynı işarete sahip. a+b pozitif olduğundan a ve b her ikisi de pozitif. Çarpımı 36 olan tam sayı çiftlerini listeleyin.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Her çiftin toplamını hesaplayın.
a=6 b=6
Çözüm, 12 toplamını veren çifttir.
\left(x^{2}+6x\right)+\left(6x+36\right)
x^{2}+12x+36 ifadesini \left(x^{2}+6x\right)+\left(6x+36\right) olarak yeniden yazın.
x\left(x+6\right)+6\left(x+6\right)
İkinci gruptaki ilk ve 6 x çarpanlarına ayırın.
\left(x+6\right)\left(x+6\right)
Dağılma özelliği kullanarak x+6 ortak terimi parantezine alın.
\left(x+6\right)^{2}
İki terimli kare olarak yazın.
x=-6
Denklemin çözümünü bulmak için x+6=0 ifadesini çözün.
x^{2}+12x+36=0
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden denklem formülünde a yerine 1, b yerine 12 ve c yerine 36 değerini koyarak çözün.
x=\frac{-12±\sqrt{144-4\times 36}}{2}
12 sayısının karesi.
x=\frac{-12±\sqrt{144-144}}{2}
-4 ile 36 sayısını çarpın.
x=\frac{-12±\sqrt{0}}{2}
-144 ile 144 sayısını toplayın.
x=-\frac{12}{2}
0 sayısının karekökünü alın.
x=-6
-12 sayısını 2 ile bölün.
\left(x+6\right)^{2}=0
Faktör x^{2}+12x+36. Genel olarak, x^{2}+bx+c bir kare olduğunda, her zaman kare olarak \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{0}
Denklemin her iki tarafının kare kökünü alın.
x+6=0 x+6=0
Sadeleştirin.
x=-6 x=-6
Denklemin her iki tarafından 6 çıkarın.
x=-6
Denklem çözüldü. Çözümleri aynı.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}