x için çözün
x=\frac{8}{1-6y}
y\neq \frac{1}{6}
y için çözün
y=\frac{1}{6}-\frac{4}{3x}
x\neq 0
Grafik
Paylaş
Panoya kopyalandı
x-6xy=8
Her iki taraftan 6xy sayısını çıkarın.
\left(1-6y\right)x=8
x içeren tüm terimleri birleştirin.
\frac{\left(1-6y\right)x}{1-6y}=\frac{8}{1-6y}
Her iki tarafı -6y+1 ile bölün.
x=\frac{8}{1-6y}
-6y+1 ile bölme, -6y+1 ile çarpma işlemini geri alır.
6xy+8=x
Tüm değişken terimler sol tarafta kalacak şekilde yer değiştirin.
6xy=x-8
Her iki taraftan 8 sayısını çıkarın.
\frac{6xy}{6x}=\frac{x-8}{6x}
Her iki tarafı 6x ile bölün.
y=\frac{x-8}{6x}
6x ile bölme, 6x ile çarpma işlemini geri alır.
y=\frac{1}{6}-\frac{4}{3x}
x-8 sayısını 6x ile bölün.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}