Ana içeriğe geç
Çarpanlara Ayır
Tick mark Image
Hesapla
Tick mark Image
Grafik

Web Aramasından Benzer Problemler

Paylaş

a+b=-3 ab=1\left(-10\right)=-10
İfadeyi gruplandırarak çarpanlarına ayırın. Öncelikle ifadenin x^{2}+ax+bx-10 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
1,-10 2,-5
ab negatif olduğundan a ve b ters işaretlere sahip. a+b negatif olduğundan, negatif sayı sıfırdan büyük bir mutlak değer içeriyor. Çarpımı -10 olan tam sayı çiftlerini listeleyin.
1-10=-9 2-5=-3
Her çiftin toplamını hesaplayın.
a=-5 b=2
Çözüm, -3 toplamını veren çifttir.
\left(x^{2}-5x\right)+\left(2x-10\right)
x^{2}-3x-10 ifadesini \left(x^{2}-5x\right)+\left(2x-10\right) olarak yeniden yazın.
x\left(x-5\right)+2\left(x-5\right)
İkinci gruptaki ilk ve 2 x çarpanlarına ayırın.
\left(x-5\right)\left(x+2\right)
Dağılma özelliği kullanarak x-5 ortak terimi parantezine alın.
x^{2}-3x-10=0
İkinci dereceden polinomsal ifadeler ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) dönüşümü kullanılarak çarpanlarına ayrılabilir. Burada x_{1} ve x_{2} ikinci dereceden ax^{2}+bx+c=0 denkleminin çözümleridir.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-10\right)}}{2}
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-10\right)}}{2}
-3 sayısının karesi.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2}
-4 ile -10 sayısını çarpın.
x=\frac{-\left(-3\right)±\sqrt{49}}{2}
40 ile 9 sayısını toplayın.
x=\frac{-\left(-3\right)±7}{2}
49 sayısının karekökünü alın.
x=\frac{3±7}{2}
-3 sayısının tersi: 3.
x=\frac{10}{2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{3±7}{2} denklemini çözün. 7 ile 3 sayısını toplayın.
x=5
10 sayısını 2 ile bölün.
x=-\frac{4}{2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{3±7}{2} denklemini çözün. 7 sayısını 3 sayısından çıkarın.
x=-2
-4 sayısını 2 ile bölün.
x^{2}-3x-10=\left(x-5\right)\left(x-\left(-2\right)\right)
Özgün ifadeyi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) kullanarak çarpanlarına ayırın. 5 yerine x_{1}, -2 yerine ise x_{2} koyun.
x^{2}-3x-10=\left(x-5\right)\left(x+2\right)
p-\left(-q\right) biçimindeki tüm ifadeleri p+q biçiminde olacak şekilde sadeleştirin.