Çarpanlara Ayır
x\left(1-2x\right)
Hesapla
x\left(1-2x\right)
Grafik
Paylaş
Panoya kopyalandı
x\left(1-2x\right)
x ortak çarpan parantezine alın.
-2x^{2}+x=0
İkinci dereceden polinomsal ifadeler ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) dönüşümü kullanılarak çarpanlarına ayrılabilir. Burada x_{1} ve x_{2} ikinci dereceden ax^{2}+bx+c=0 denkleminin çözümleridir.
x=\frac{-1±\sqrt{1^{2}}}{2\left(-2\right)}
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-1±1}{2\left(-2\right)}
1^{2} sayısının karekökünü alın.
x=\frac{-1±1}{-4}
2 ile -2 sayısını çarpın.
x=\frac{0}{-4}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{-1±1}{-4} denklemini çözün. 1 ile -1 sayısını toplayın.
x=0
0 sayısını -4 ile bölün.
x=-\frac{2}{-4}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{-1±1}{-4} denklemini çözün. 1 sayısını -1 sayısından çıkarın.
x=\frac{1}{2}
2 terimini kökün dışına çıkarıp yok ederek \frac{-2}{-4} kesrini sadeleştirin.
-2x^{2}+x=-2x\left(x-\frac{1}{2}\right)
Özgün ifadeyi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) kullanarak çarpanlarına ayırın. 0 yerine x_{1}, \frac{1}{2} yerine ise x_{2} koyun.
-2x^{2}+x=-2x\times \frac{-2x+1}{-2}
Ortak paydayı bularak ve payları çıkararak x sayısını \frac{1}{2} sayısından çıkarın. Daha sonra mümkünse kesri en küçük terimlere sadeleştirin.
-2x^{2}+x=x\left(-2x+1\right)
-2 ve -2 sayılarını, bu sayıların en büyük ortak çarpanı olan 2 ile sadeleştirin.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}