Çarpanlara Ayır
\left(x-1\right)\left(3x-5\right)\left(4x+5\right)
Hesapla
\left(x-1\right)\left(3x-5\right)\left(4x+5\right)
Grafik
Paylaş
Panoya kopyalandı
\left(3x-5\right)\left(4x^{2}+x-5\right)
Rational root tarafından, \frac{p}{q} polinom 'un tüm Rational kökleri, p 25 sabit terimi bölen ve q baştaki katsayısını 12 böler. \frac{5}{3} değeri de böyle bir köktür. Polinomu, 3x-5 ile bölerek çarpanlarına ayırın.
a+b=1 ab=4\left(-5\right)=-20
4x^{2}+x-5 ifadesini dikkate alın. İfadeyi gruplandırarak çarpanlarına ayırın. Öncelikle ifadenin 4x^{2}+ax+bx-5 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
-1,20 -2,10 -4,5
ab negatif olduğundan a ve b ters işaretlere sahip. a+b pozitif olduğundan, pozitif sayı negatif boyuttan daha büyük mutlak değer içeriyor. Çarpımı -20 olan tam sayı çiftlerini listeleyin.
-1+20=19 -2+10=8 -4+5=1
Her çiftin toplamını hesaplayın.
a=-4 b=5
Çözüm, 1 toplamını veren çifttir.
\left(4x^{2}-4x\right)+\left(5x-5\right)
4x^{2}+x-5 ifadesini \left(4x^{2}-4x\right)+\left(5x-5\right) olarak yeniden yazın.
4x\left(x-1\right)+5\left(x-1\right)
İkinci gruptaki ilk ve 5 4x çarpanlarına ayırın.
\left(x-1\right)\left(4x+5\right)
Dağılma özelliği kullanarak x-1 ortak terimi parantezine alın.
\left(3x-5\right)\left(x-1\right)\left(4x+5\right)
Çarpanlarına ayrılan tüm ifadeyi yeniden yazın.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}