Çarpanlara Ayır
\left(1-x\right)\left(x-5\right)\left(x+3\right)
Hesapla
\left(1-x\right)\left(x-5\right)\left(x+3\right)
Grafik
Paylaş
Panoya kopyalandı
\left(x-5\right)\left(-x^{2}-2x+3\right)
Rational root tarafından, \frac{p}{q} polinom 'un tüm Rational kökleri, p -15 sabit terimi bölen ve q baştaki katsayısını -1 böler. 5 değeri de böyle bir köktür. Polinomu, x-5 ile bölerek çarpanlarına ayırın.
a+b=-2 ab=-3=-3
-x^{2}-2x+3 ifadesini dikkate alın. İfadeyi gruplandırarak çarpanlarına ayırın. Öncelikle ifadenin -x^{2}+ax+bx+3 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
a=1 b=-3
ab negatif olduğundan a ve b ters işaretlere sahip. a+b negatif olduğundan, negatif sayı sıfırdan büyük bir mutlak değer içeriyor. Bu tür bir çift sistem çözümüdür.
\left(-x^{2}+x\right)+\left(-3x+3\right)
-x^{2}-2x+3 ifadesini \left(-x^{2}+x\right)+\left(-3x+3\right) olarak yeniden yazın.
x\left(-x+1\right)+3\left(-x+1\right)
İkinci gruptaki ilk ve 3 x çarpanlarına ayırın.
\left(-x+1\right)\left(x+3\right)
Dağılma özelliği kullanarak -x+1 ortak terimi parantezine alın.
\left(x-5\right)\left(-x+1\right)\left(x+3\right)
Çarpanlarına ayrılan tüm ifadeyi yeniden yazın.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}