b için çöz
\left\{\begin{matrix}b=\sqrt{9-a^{2}}\text{, }&a=\frac{3\sqrt{2}+3\sqrt{6}}{4}\\b=-\sqrt{3}a+2a\text{, }&a=0\text{ or }a=\frac{-3\sqrt{2}-3\sqrt{6}}{4}\\b\in \begin{bmatrix}-\sqrt{9-a^{2}},\sqrt{3}|a|+2a\end{bmatrix}\text{, }&a>\frac{-3\sqrt{2}-3\sqrt{6}}{4}\text{ and }a\leq \frac{3\sqrt{2}-3\sqrt{6}}{4}\\b\in \begin{bmatrix}-\sqrt{3}|a|+2a,\sqrt{3}|a|+2a\end{bmatrix}\text{, }&\left(a>0\text{ and }a<\frac{3\sqrt{6}-3\sqrt{2}}{4}\right)\text{ or }\left(a>\frac{3\sqrt{2}-3\sqrt{6}}{4}\text{ and }a<0\right)\\b\in \begin{bmatrix}-\sqrt{3}|a|+2a,\sqrt{9-a^{2}}\end{bmatrix}\text{, }&a\geq \frac{3\sqrt{6}-3\sqrt{2}}{4}\text{ and }a<\frac{3\sqrt{2}+3\sqrt{6}}{4}\end{matrix}\right,
a için çöz
\left\{\begin{matrix}a=\sqrt{9-b^{2}}\text{, }&b=\frac{3\sqrt{2}+3\sqrt{6}}{4}\\a=-\sqrt{3}b+2b\text{, }&b=0\text{ or }b=\frac{-3\sqrt{2}-3\sqrt{6}}{4}\\a\in \begin{bmatrix}-\sqrt{9-b^{2}},\sqrt{3}|b|+2b\end{bmatrix}\text{, }&b>\frac{-3\sqrt{2}-3\sqrt{6}}{4}\text{ and }b\leq \frac{3\sqrt{2}-3\sqrt{6}}{4}\\a\in \begin{bmatrix}-\sqrt{3}|b|+2b,\sqrt{3}|b|+2b\end{bmatrix}\text{, }&\left(b>0\text{ and }b<\frac{3\sqrt{6}-3\sqrt{2}}{4}\right)\text{ or }\left(b>\frac{3\sqrt{2}-3\sqrt{6}}{4}\text{ and }b<0\right)\\a\in \begin{bmatrix}-\sqrt{3}|b|+2b,\sqrt{9-b^{2}}\end{bmatrix}\text{, }&b\geq \frac{3\sqrt{6}-3\sqrt{2}}{4}\text{ and }b<\frac{3\sqrt{2}+3\sqrt{6}}{4}\end{matrix}\right,
Paylaş
Panoya kopyalandı
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}