P için çözün
P\neq 0
x = \frac{\sqrt[3]{6 \sqrt{80229} + 1765} + \sqrt[3]{1765 - 6 \sqrt{80229}} + 7}{12} = 2,1802301552804595
x için çözün
x = \frac{\sqrt[3]{6 \sqrt{80229} + 1765} + \sqrt[3]{1765 - 6 \sqrt{80229}} + 7}{12} = 2,1802301552804595
P\neq 0
Grafik
Paylaş
Panoya kopyalandı
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{2+x}{2-x}+\frac{4x^{2}}{x^{2}-4}-\frac{2-x}{2+x}\right)
Sıfıra bölünme tanımlı olmadığından P değişkeni, 0 değerine eşit olamaz. Denklemin her iki tarafını P ile çarpın.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{2+x}{2-x}+\frac{4x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
x^{2}-4 ifadesini çarpanlarına ayırın.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{\left(2+x\right)\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{4x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
İfadeleri toplamak ve çıkarmak için bunları genişleterek paydalarını eşitleyin. 2-x ve \left(x-2\right)\left(x+2\right) sayılarının en küçük ortak katı \left(x-2\right)\left(x+2\right) sayısıdır. \frac{2+x}{2-x} ile \frac{-\left(x+2\right)}{-\left(x+2\right)} sayısını çarpın.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{\left(2+x\right)\left(-1\right)\left(x+2\right)+4x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
\frac{\left(2+x\right)\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} ile \frac{4x^{2}}{\left(x-2\right)\left(x+2\right)} aynı paydaya sahip olduğundan paylarını toplayarak toplama işlemi yapabilirsiniz.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{-2x-4-x^{2}-2x+4x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
\left(2+x\right)\left(-1\right)\left(x+2\right)+4x^{2} ifadesindeki çarpımları yapın.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{-4x-4+3x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
-2x-4-x^{2}-2x+4x^{2} ifadesindeki benzer terimleri toplayın.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{\left(x-2\right)\left(3x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
\frac{-4x-4+3x^{2}}{\left(x-2\right)\left(x+2\right)} ifadesindeki çarpanlarına ayrılmamış ifadeleri çarpanlarına ayırın.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{3x+2}{x+2}-\frac{2-x}{2+x}\right)
Pay ve paydadaki x-2 değerleri birbirini götürür.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\times \frac{3x+2-\left(2-x\right)}{x+2}
\frac{3x+2}{x+2} ile \frac{2-x}{2+x} aynı paydaya sahip olduğundan paylarını çıkararak çıkarma işlemi yapabilirsiniz.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\times \frac{3x+2-2+x}{x+2}
3x+2-\left(2-x\right) ifadesindeki çarpımları yapın.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\times \frac{4x}{x+2}
3x+2-2+x ifadesindeki benzer terimleri toplayın.
P=\frac{P\times 4x}{x+2}x\left(-3+x\right)^{-1}\left(2-x\right)
P\times \frac{4x}{x+2} değerini tek bir kesir olarak ifade edin.
P=2\times \frac{P\times 4x}{x+2}x\left(-3+x\right)^{-1}-\frac{4Px}{x+2}\left(-3+x\right)^{-1}x^{2}
\frac{P\times 4x}{x+2}x\left(-3+x\right)^{-1} sayısını 2-x ile çarpmak için dağılma özelliğini kullanın.
P=\frac{2P\times 4x}{x+2}x\left(-3+x\right)^{-1}-\frac{4Px}{x+2}\left(-3+x\right)^{-1}x^{2}
2\times \frac{P\times 4x}{x+2} değerini tek bir kesir olarak ifade edin.
P=\frac{2P\times 4xx}{x+2}\left(-3+x\right)^{-1}-\frac{4Px}{x+2}\left(-3+x\right)^{-1}x^{2}
\frac{2P\times 4x}{x+2}x değerini tek bir kesir olarak ifade edin.
P=\frac{2P\times 4xx\left(-3+x\right)^{-1}}{x+2}-\frac{4Px}{x+2}\left(-3+x\right)^{-1}x^{2}
\frac{2P\times 4xx}{x+2}\left(-3+x\right)^{-1} değerini tek bir kesir olarak ifade edin.
P=\frac{2P\times 4xx\left(-3+x\right)^{-1}}{x+2}-\frac{4Px\left(-3+x\right)^{-1}}{x+2}x^{2}
\frac{4Px}{x+2}\left(-3+x\right)^{-1} değerini tek bir kesir olarak ifade edin.
P=\frac{2P\times 4xx\left(-3+x\right)^{-1}}{x+2}-\frac{4Px\left(-3+x\right)^{-1}x^{2}}{x+2}
\frac{4Px\left(-3+x\right)^{-1}}{x+2}x^{2} değerini tek bir kesir olarak ifade edin.
P=\frac{2P\times 4xx\left(-3+x\right)^{-1}-4Px\left(-3+x\right)^{-1}x^{2}}{x+2}
\frac{2P\times 4xx\left(-3+x\right)^{-1}}{x+2} ile \frac{4Px\left(-3+x\right)^{-1}x^{2}}{x+2} aynı paydaya sahip olduğundan paylarını çıkararak çıkarma işlemi yapabilirsiniz.
P=\frac{2P\times 4x^{2}\left(-3+x\right)^{-1}-4Px\left(-3+x\right)^{-1}x^{2}}{x+2}
x ve x sayılarını çarparak x^{2} sonucunu bulun.
P=\frac{2P\times 4x^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}}{x+2}
Aynı tabana sahip üslü ifadeleri çarpmak için üs değerlerini toplayın. 2 ile 1 toplandığında 3 elde edilir.
P=\frac{8Px^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}}{x+2}
2 ve 4 sayılarını çarparak 8 sonucunu bulun.
P-\frac{8Px^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}}{x+2}=0
Her iki taraftan \frac{8Px^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}}{x+2} sayısını çıkarın.
\left(x+2\right)P-\left(8Px^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}\right)=0
Denklemin her iki tarafını x+2 ile çarpın.
-\left(-4\times \frac{1}{x-3}Px^{3}+8\times \frac{1}{x-3}Px^{2}\right)+P\left(x+2\right)=0
Terimleri yeniden sıralayın.
-\left(-4\times \frac{1}{x-3}Px^{3}+8\times \frac{1}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
Denklemin her iki tarafını x-3 ile çarpın.
-\left(\frac{-4}{x-3}Px^{3}+8\times \frac{1}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
-4\times \frac{1}{x-3} değerini tek bir kesir olarak ifade edin.
-\left(\frac{-4P}{x-3}x^{3}+8\times \frac{1}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
\frac{-4}{x-3}P değerini tek bir kesir olarak ifade edin.
-\left(\frac{-4Px^{3}}{x-3}+8\times \frac{1}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
\frac{-4P}{x-3}x^{3} değerini tek bir kesir olarak ifade edin.
-\left(\frac{-4Px^{3}}{x-3}+\frac{8}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
8\times \frac{1}{x-3} değerini tek bir kesir olarak ifade edin.
-\left(\frac{-4Px^{3}}{x-3}+\frac{8P}{x-3}x^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
\frac{8}{x-3}P değerini tek bir kesir olarak ifade edin.
-\left(\frac{-4Px^{3}}{x-3}+\frac{8Px^{2}}{x-3}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
\frac{8P}{x-3}x^{2} değerini tek bir kesir olarak ifade edin.
-\frac{-4Px^{3}+8Px^{2}}{x-3}\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
\frac{-4Px^{3}}{x-3} ile \frac{8Px^{2}}{x-3} aynı paydaya sahip olduğundan paylarını toplayarak toplama işlemi yapabilirsiniz.
-\frac{\left(-4Px^{3}+8Px^{2}\right)\left(x-3\right)}{x-3}+P\left(x+2\right)\left(x-3\right)=0
\frac{-4Px^{3}+8Px^{2}}{x-3}\left(x-3\right) değerini tek bir kesir olarak ifade edin.
-\left(-4Px^{3}+8Px^{2}\right)+P\left(x+2\right)\left(x-3\right)=0
Pay ve paydadaki x-3 değerleri birbirini götürür.
4Px^{3}-8Px^{2}+P\left(x+2\right)\left(x-3\right)=0
-4Px^{3}+8Px^{2} tersini bulmak için her terimin tersini bulun.
4Px^{3}-8Px^{2}+\left(Px+2P\right)\left(x-3\right)=0
P sayısını x+2 ile çarpmak için dağılma özelliğini kullanın.
4Px^{3}-8Px^{2}+Px^{2}-Px-6P=0
Px+2P ile x-3 ifadesini çarpmak için dağılma özelliğini kullanın ve benzer terimleri birleştirin.
4Px^{3}-7Px^{2}-Px-6P=0
-8Px^{2} ve Px^{2} terimlerini birleştirerek -7Px^{2} sonucunu elde edin.
\left(4x^{3}-7x^{2}-x-6\right)P=0
P içeren tüm terimleri birleştirin.
P=0
0 sayısını -x-7x^{2}-6+4x^{3} ile bölün.
P\in \emptyset
P değişkeni 0 değerine eşit olamaz.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}