B için çözün
B=\frac{7\sqrt{2}}{C}
C\neq 0
C için çözün
C=\frac{7\sqrt{2}}{B}
B\neq 0
Paylaş
Panoya kopyalandı
CB=\sqrt{49+7^{2}}
2 sayısının 7 kuvvetini hesaplayarak 49 sonucunu bulun.
CB=\sqrt{49+49}
2 sayısının 7 kuvvetini hesaplayarak 49 sonucunu bulun.
CB=\sqrt{98}
49 ve 49 sayılarını toplayarak 98 sonucunu bulun.
CB=7\sqrt{2}
98=7^{2}\times 2 ifadesini çarpanlarına ayırın. Ürün \sqrt{7^{2}\times 2} karekökünü, ana kare \sqrt{7^{2}}\sqrt{2} çarpımı olarak yeniden yazın. 7^{2} sayısının karekökünü alın.
\frac{CB}{C}=\frac{7\sqrt{2}}{C}
Her iki tarafı C ile bölün.
B=\frac{7\sqrt{2}}{C}
C ile bölme, C ile çarpma işlemini geri alır.
CB=\sqrt{49+7^{2}}
2 sayısının 7 kuvvetini hesaplayarak 49 sonucunu bulun.
CB=\sqrt{49+49}
2 sayısının 7 kuvvetini hesaplayarak 49 sonucunu bulun.
CB=\sqrt{98}
49 ve 49 sayılarını toplayarak 98 sonucunu bulun.
CB=7\sqrt{2}
98=7^{2}\times 2 ifadesini çarpanlarına ayırın. Ürün \sqrt{7^{2}\times 2} karekökünü, ana kare \sqrt{7^{2}}\sqrt{2} çarpımı olarak yeniden yazın. 7^{2} sayısının karekökünü alın.
BC=7\sqrt{2}
Denklem standart biçimdedir.
\frac{BC}{B}=\frac{7\sqrt{2}}{B}
Her iki tarafı B ile bölün.
C=\frac{7\sqrt{2}}{B}
B ile bölme, B ile çarpma işlemini geri alır.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}