Hesapla
4x^{6}+2x^{4}-x+1
Türevini al: w.r.t. x
24x^{5}+8x^{3}-1
Grafik
Paylaş
Panoya kopyalandı
4x^{6}+2x^{4}-x^{1}+1
Aynı tabana sahip üslü ifadeleri bölmek için paydanın üssünü payın üssünden çıkarın. 2 değerinden 1 çıkarıldığında 1 elde edilir.
4x^{6}+2x^{4}-x+1
1 sayısının x kuvvetini hesaplayarak x sonucunu bulun.
\frac{\mathrm{d}}{\mathrm{d}x}(4x^{6}+2x^{4}-x^{1}+1)
Aynı tabana sahip üslü ifadeleri bölmek için paydanın üssünü payın üssünden çıkarın. 2 değerinden 1 çıkarıldığında 1 elde edilir.
\frac{\mathrm{d}}{\mathrm{d}x}(4x^{6}+2x^{4}-x+1)
1 sayısının x kuvvetini hesaplayarak x sonucunu bulun.
6\times 4x^{6-1}+4\times 2x^{4-1}-x^{1-1}
Bir polinomun türevi, terimlerinin türevleri toplamıdır. Bir sabit terimin türevi 0 değerini verir. ax^{n} ifadesinin türevi: nax^{n-1}.
24x^{6-1}+4\times 2x^{4-1}-x^{1-1}
6 ile 4 sayısını çarpın.
24x^{5}+4\times 2x^{4-1}-x^{1-1}
1 sayısını 6 sayısından çıkarın.
24x^{5}+8x^{4-1}-x^{1-1}
4 ile 2 sayısını çarpın.
24x^{5}+8x^{3}-x^{1-1}
1 sayısını 4 sayısından çıkarın.
24x^{5}+8x^{3}-x^{0}
1 sayısını 1 sayısından çıkarın.
24x^{5}+8x^{3}-1
0 dışındaki herhangi bir t terimi için t^{0}=1.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}