x için çözün
x=-2
x=6
Grafik
Paylaş
Panoya kopyalandı
\left(2-x\right)^{2}=\frac{48}{3}
Her iki tarafı 3 ile bölün.
\left(2-x\right)^{2}=16
48 sayısını 3 sayısına bölerek 16 sonucunu bulun.
4-4x+x^{2}=16
\left(2-x\right)^{2} ifadesini genişletmek için \left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremini kullanın.
4-4x+x^{2}-16=0
Her iki taraftan 16 sayısını çıkarın.
-12-4x+x^{2}=0
4 sayısından 16 sayısını çıkarıp -12 sonucunu bulun.
x^{2}-4x-12=0
Standart biçime dönüştürmek için polinomu yeniden düzenleyin. Terimleri üslerine göre azalan düzende sıralayın.
a+b=-4 ab=-12
Denklemi çözmek için x^{2}-4x-12 formül x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) 'ni kullanarak faktörü yapın. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
1,-12 2,-6 3,-4
ab negatif olduğundan a ve b ters işaretlere sahip. a+b negatif olduğundan, negatif sayı sıfırdan büyük bir mutlak değer içeriyor. Çarpımı -12 olan tam sayı çiftlerini listeleyin.
1-12=-11 2-6=-4 3-4=-1
Her çiftin toplamını hesaplayın.
a=-6 b=2
Çözüm, -4 toplamını veren çifttir.
\left(x-6\right)\left(x+2\right)
Alınan değerleri kullanarak \left(x+a\right)\left(x+b\right), bu ifadeyi yeniden yazın.
x=6 x=-2
Denklem çözümlerini bulmak için x-6=0 ve x+2=0 çözün.
\left(2-x\right)^{2}=\frac{48}{3}
Her iki tarafı 3 ile bölün.
\left(2-x\right)^{2}=16
48 sayısını 3 sayısına bölerek 16 sonucunu bulun.
4-4x+x^{2}=16
\left(2-x\right)^{2} ifadesini genişletmek için \left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremini kullanın.
4-4x+x^{2}-16=0
Her iki taraftan 16 sayısını çıkarın.
-12-4x+x^{2}=0
4 sayısından 16 sayısını çıkarıp -12 sonucunu bulun.
x^{2}-4x-12=0
Standart biçime dönüştürmek için polinomu yeniden düzenleyin. Terimleri üslerine göre azalan düzende sıralayın.
a+b=-4 ab=1\left(-12\right)=-12
Denklemi çözmek için sol tarafı gruplandırarak çarpanlarına ayırın. Öncelikle sol tarafın x^{2}+ax+bx-12 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
1,-12 2,-6 3,-4
ab negatif olduğundan a ve b ters işaretlere sahip. a+b negatif olduğundan, negatif sayı sıfırdan büyük bir mutlak değer içeriyor. Çarpımı -12 olan tam sayı çiftlerini listeleyin.
1-12=-11 2-6=-4 3-4=-1
Her çiftin toplamını hesaplayın.
a=-6 b=2
Çözüm, -4 toplamını veren çifttir.
\left(x^{2}-6x\right)+\left(2x-12\right)
x^{2}-4x-12 ifadesini \left(x^{2}-6x\right)+\left(2x-12\right) olarak yeniden yazın.
x\left(x-6\right)+2\left(x-6\right)
İkinci gruptaki ilk ve 2 x çarpanlarına ayırın.
\left(x-6\right)\left(x+2\right)
Dağılma özelliği kullanarak x-6 ortak terimi parantezine alın.
x=6 x=-2
Denklem çözümlerini bulmak için x-6=0 ve x+2=0 çözün.
\left(2-x\right)^{2}=\frac{48}{3}
Her iki tarafı 3 ile bölün.
\left(2-x\right)^{2}=16
48 sayısını 3 sayısına bölerek 16 sonucunu bulun.
4-4x+x^{2}=16
\left(2-x\right)^{2} ifadesini genişletmek için \left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremini kullanın.
4-4x+x^{2}-16=0
Her iki taraftan 16 sayısını çıkarın.
-12-4x+x^{2}=0
4 sayısından 16 sayısını çıkarıp -12 sonucunu bulun.
x^{2}-4x-12=0
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden denklem formülünde a yerine 1, b yerine -4 ve c yerine -12 değerini koyarak çözün.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
-4 sayısının karesi.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
-4 ile -12 sayısını çarpın.
x=\frac{-\left(-4\right)±\sqrt{64}}{2}
48 ile 16 sayısını toplayın.
x=\frac{-\left(-4\right)±8}{2}
64 sayısının karekökünü alın.
x=\frac{4±8}{2}
-4 sayısının tersi: 4.
x=\frac{12}{2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{4±8}{2} denklemini çözün. 8 ile 4 sayısını toplayın.
x=6
12 sayısını 2 ile bölün.
x=-\frac{4}{2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{4±8}{2} denklemini çözün. 8 sayısını 4 sayısından çıkarın.
x=-2
-4 sayısını 2 ile bölün.
x=6 x=-2
Denklem çözüldü.
\left(2-x\right)^{2}=\frac{48}{3}
Her iki tarafı 3 ile bölün.
\left(2-x\right)^{2}=16
48 sayısını 3 sayısına bölerek 16 sonucunu bulun.
4-4x+x^{2}=16
\left(2-x\right)^{2} ifadesini genişletmek için \left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremini kullanın.
-4x+x^{2}=16-4
Her iki taraftan 4 sayısını çıkarın.
-4x+x^{2}=12
16 sayısından 4 sayısını çıkarıp 12 sonucunu bulun.
x^{2}-4x=12
Buna benzer karesel denklemler, kareyi tamamlayarak çözülebilir. Kareyi tamamlamak için denklemin x^{2}+bx=c biçiminde olması gerekir.
x^{2}-4x+\left(-2\right)^{2}=12+\left(-2\right)^{2}
x teriminin katsayısı olan -4 sayısını 2 değerine bölerek -2 sonucunu elde edin. Sonra, denklemin her iki tarafına -2 sayısının karesini ekleyin. Bu adım, denklemin sol tarafının tam kare olmasını sağlar.
x^{2}-4x+4=12+4
-2 sayısının karesi.
x^{2}-4x+4=16
4 ile 12 sayısını toplayın.
\left(x-2\right)^{2}=16
Faktör x^{2}-4x+4. Genel olarak, x^{2}+bx+c bir kare olduğunda, her zaman kare olarak \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{16}
Denklemin her iki tarafının kare kökünü alın.
x-2=4 x-2=-4
Sadeleştirin.
x=6 x=-2
Denklemin her iki tarafına 2 ekleyin.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}