Ana içeriğe geç
x için çözün
Tick mark Image
Grafik

Web Aramasından Benzer Problemler

Paylaş

x^{2}-6x+9=0
Her iki tarafı 3 ile bölün.
a+b=-6 ab=1\times 9=9
Denklemi çözmek için sol tarafı gruplandırarak çarpanlarına ayırın. Öncelikle sol tarafın x^{2}+ax+bx+9 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
-1,-9 -3,-3
ab pozitif olduğundan a ve b aynı işarete sahip. a+b negatif olduğundan a ve b her ikisi de negatiftir. Çarpımı 9 olan tam sayı çiftlerini listeleyin.
-1-9=-10 -3-3=-6
Her çiftin toplamını hesaplayın.
a=-3 b=-3
Çözüm, -6 toplamını veren çifttir.
\left(x^{2}-3x\right)+\left(-3x+9\right)
x^{2}-6x+9 ifadesini \left(x^{2}-3x\right)+\left(-3x+9\right) olarak yeniden yazın.
x\left(x-3\right)-3\left(x-3\right)
İkinci gruptaki ilk ve -3 x çarpanlarına ayırın.
\left(x-3\right)\left(x-3\right)
Dağılma özelliği kullanarak x-3 ortak terimi parantezine alın.
\left(x-3\right)^{2}
İki terimli kare olarak yazın.
x=3
Denklemin çözümünü bulmak için x-3=0 ifadesini çözün.
3x^{2}-18x+27=0
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 3\times 27}}{2\times 3}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden denklem formülünde a yerine 3, b yerine -18 ve c yerine 27 değerini koyarak çözün.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 3\times 27}}{2\times 3}
-18 sayısının karesi.
x=\frac{-\left(-18\right)±\sqrt{324-12\times 27}}{2\times 3}
-4 ile 3 sayısını çarpın.
x=\frac{-\left(-18\right)±\sqrt{324-324}}{2\times 3}
-12 ile 27 sayısını çarpın.
x=\frac{-\left(-18\right)±\sqrt{0}}{2\times 3}
-324 ile 324 sayısını toplayın.
x=-\frac{-18}{2\times 3}
0 sayısının karekökünü alın.
x=\frac{18}{2\times 3}
-18 sayısının tersi: 18.
x=\frac{18}{6}
2 ile 3 sayısını çarpın.
x=3
18 sayısını 6 ile bölün.
3x^{2}-18x+27=0
Buna benzer karesel denklemler, kareyi tamamlayarak çözülebilir. Kareyi tamamlamak için denklemin x^{2}+bx=c biçiminde olması gerekir.
3x^{2}-18x+27-27=-27
Denklemin her iki tarafından 27 çıkarın.
3x^{2}-18x=-27
27 kendisinden çıkarıldığında 0 kalır.
\frac{3x^{2}-18x}{3}=-\frac{27}{3}
Her iki tarafı 3 ile bölün.
x^{2}+\left(-\frac{18}{3}\right)x=-\frac{27}{3}
3 ile bölme, 3 ile çarpma işlemini geri alır.
x^{2}-6x=-\frac{27}{3}
-18 sayısını 3 ile bölün.
x^{2}-6x=-9
-27 sayısını 3 ile bölün.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
x teriminin katsayısı olan -6 sayısını 2 değerine bölerek -3 sonucunu elde edin. Sonra, denklemin her iki tarafına -3 sayısının karesini ekleyin. Bu adım, denklemin sol tarafının tam kare olmasını sağlar.
x^{2}-6x+9=-9+9
-3 sayısının karesi.
x^{2}-6x+9=0
9 ile -9 sayısını toplayın.
\left(x-3\right)^{2}=0
Faktör x^{2}-6x+9. Genel olarak, x^{2}+bx+c bir kare olduğunda, her zaman kare olarak \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Denklemin her iki tarafının kare kökünü alın.
x-3=0 x-3=0
Sadeleştirin.
x=3 x=3
Denklemin her iki tarafına 3 ekleyin.
x=3
Denklem çözüldü. Çözümleri aynı.