Ana içeriğe geç
r için çözün
Tick mark Image

Web Aramasından Benzer Problemler

Paylaş

15=\frac{1}{2}\times 98r^{2}
3 ve 12 sayılarını toplayarak 15 sonucunu bulun.
15=49r^{2}
\frac{1}{2} ve 98 sayılarını çarparak 49 sonucunu bulun.
49r^{2}=15
Tüm değişken terimler sol tarafta kalacak şekilde yer değiştirin.
r^{2}=\frac{15}{49}
Her iki tarafı 49 ile bölün.
r=\frac{\sqrt{15}}{7} r=-\frac{\sqrt{15}}{7}
Denklemin her iki tarafının kare kökünü alın.
15=\frac{1}{2}\times 98r^{2}
3 ve 12 sayılarını toplayarak 15 sonucunu bulun.
15=49r^{2}
\frac{1}{2} ve 98 sayılarını çarparak 49 sonucunu bulun.
49r^{2}=15
Tüm değişken terimler sol tarafta kalacak şekilde yer değiştirin.
49r^{2}-15=0
Her iki taraftan 15 sayısını çıkarın.
r=\frac{0±\sqrt{0^{2}-4\times 49\left(-15\right)}}{2\times 49}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden denklem formülünde a yerine 49, b yerine 0 ve c yerine -15 değerini koyarak çözün.
r=\frac{0±\sqrt{-4\times 49\left(-15\right)}}{2\times 49}
0 sayısının karesi.
r=\frac{0±\sqrt{-196\left(-15\right)}}{2\times 49}
-4 ile 49 sayısını çarpın.
r=\frac{0±\sqrt{2940}}{2\times 49}
-196 ile -15 sayısını çarpın.
r=\frac{0±14\sqrt{15}}{2\times 49}
2940 sayısının karekökünü alın.
r=\frac{0±14\sqrt{15}}{98}
2 ile 49 sayısını çarpın.
r=\frac{\sqrt{15}}{7}
Şimdi, ± değerinin pozitif olduğunu varsayarak r=\frac{0±14\sqrt{15}}{98} denklemini çözün.
r=-\frac{\sqrt{15}}{7}
Şimdi, ± değerinin negatif olduğunu varsayarak r=\frac{0±14\sqrt{15}}{98} denklemini çözün.
r=\frac{\sqrt{15}}{7} r=-\frac{\sqrt{15}}{7}
Denklem çözüldü.