Ana içeriğe geç
x için çözün
Tick mark Image
Grafik

Web Aramasından Benzer Problemler

Paylaş

a+b=-3 ab=2\left(-5\right)=-10
Denklemi çözmek için sol tarafı gruplandırarak çarpanlarına ayırın. Öncelikle sol tarafın 2x^{2}+ax+bx-5 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
1,-10 2,-5
ab negatif olduğundan a ve b ters işaretlere sahip. a+b negatif olduğundan, negatif sayı sıfırdan büyük bir mutlak değer içeriyor. Çarpımı -10 olan tam sayı çiftlerini listeleyin.
1-10=-9 2-5=-3
Her çiftin toplamını hesaplayın.
a=-5 b=2
Çözüm, -3 toplamını veren çifttir.
\left(2x^{2}-5x\right)+\left(2x-5\right)
2x^{2}-3x-5 ifadesini \left(2x^{2}-5x\right)+\left(2x-5\right) olarak yeniden yazın.
x\left(2x-5\right)+2x-5
2x^{2}-5x ifadesini x ortak çarpan parantezine alın.
\left(2x-5\right)\left(x+1\right)
Dağılma özelliği kullanarak 2x-5 ortak terimi parantezine alın.
x=\frac{5}{2} x=-1
Denklem çözümlerini bulmak için 2x-5=0 ve x+1=0 çözün.
2x^{2}-3x-5=0
ax^{2}+bx+c=0 biçimindeki tüm denklemler, karesel formül kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Karesel formül, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden formülünde a yerine 2, b yerine -3 ve c yerine -5 değerini koyarak çözün.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
-3 sayısının karesi.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
-4 ile 2 sayısını çarpın.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
-8 ile -5 sayısını çarpın.
x=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
40 ile 9 sayısını toplayın.
x=\frac{-\left(-3\right)±7}{2\times 2}
49 sayısının karekökünü alın.
x=\frac{3±7}{2\times 2}
-3 sayısının tersi: 3.
x=\frac{3±7}{4}
2 ile 2 sayısını çarpın.
x=\frac{10}{4}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{3±7}{4} denklemini çözün. 7 ile 3 sayısını toplayın.
x=\frac{5}{2}
2 terimini kökün dışına çıkarıp yok ederek \frac{10}{4} kesrini sadeleştirin.
x=-\frac{4}{4}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{3±7}{4} denklemini çözün. 7 sayısını 3 sayısından çıkarın.
x=-1
-4 sayısını 4 ile bölün.
x=\frac{5}{2} x=-1
Denklem çözüldü.
2x^{2}-3x-5=0
Buna benzer karesel denklemler, kareyi tamamlayarak çözülebilir. Kareyi tamamlamak için denklemin x^{2}+bx=c biçiminde olması gerekir.
2x^{2}-3x-5-\left(-5\right)=-\left(-5\right)
Denklemin her iki tarafına 5 ekleyin.
2x^{2}-3x=-\left(-5\right)
-5 kendisinden çıkarıldığında 0 kalır.
2x^{2}-3x=5
-5 sayısını 0 sayısından çıkarın.
\frac{2x^{2}-3x}{2}=\frac{5}{2}
Her iki tarafı 2 ile bölün.
x^{2}-\frac{3}{2}x=\frac{5}{2}
2 ile bölme, 2 ile çarpma işlemini geri alır.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{4}\right)^{2}
x teriminin katsayısı olan -\frac{3}{2} sayısını 2 değerine bölerek -\frac{3}{4} sonucunu elde edin. Sonra, denklemin her iki tarafına -\frac{3}{4} sayısının karesini ekleyin. Bu adım, denklemin sol tarafının tam kare olmasını sağlar.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
-\frac{3}{4} kesrinin karesini almak için hem payın hem de paydanın karesini alın.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Ortak paydayı bularak ve payları toplayarak \frac{5}{2} ile \frac{9}{16} sayısını toplayın. Daha sonra mümkünse kesri en küçük terimlere sadeleştirin.
\left(x-\frac{3}{4}\right)^{2}=\frac{49}{16}
x^{2}-\frac{3}{2}x+\frac{9}{16} ifadesini çarpanlarına ayırın. Genellikle x^{2}+bx+c tam kare olduğunda her zaman \left(x+\frac{b}{2}\right)^{2} şeklinde çarpanlara ayrılabilir.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Denklemin her iki tarafının kare kökünü alın.
x-\frac{3}{4}=\frac{7}{4} x-\frac{3}{4}=-\frac{7}{4}
Sadeleştirin.
x=\frac{5}{2} x=-1
Denklemin her iki tarafına \frac{3}{4} ekleyin.