Ana içeriğe geç
a için çözün
Tick mark Image

Web Aramasından Benzer Problemler

Paylaş

a^{2}-6a+9=0
Her iki tarafı 2 ile bölün.
a+b=-6 ab=1\times 9=9
Denklemi çözmek için sol tarafı gruplandırarak çarpanlarına ayırın. Öncelikle sol tarafın a^{2}+aa+ba+9 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
-1,-9 -3,-3
ab pozitif olduğundan a ve b aynı işarete sahip. a+b negatif olduğundan a ve b her ikisi de negatiftir. Çarpımı 9 olan tam sayı çiftlerini listeleyin.
-1-9=-10 -3-3=-6
Her çiftin toplamını hesaplayın.
a=-3 b=-3
Çözüm, -6 toplamını veren çifttir.
\left(a^{2}-3a\right)+\left(-3a+9\right)
a^{2}-6a+9 ifadesini \left(a^{2}-3a\right)+\left(-3a+9\right) olarak yeniden yazın.
a\left(a-3\right)-3\left(a-3\right)
İkinci gruptaki ilk ve -3 a çarpanlarına ayırın.
\left(a-3\right)\left(a-3\right)
Dağılma özelliği kullanarak a-3 ortak terimi parantezine alın.
\left(a-3\right)^{2}
İki terimli kare olarak yazın.
a=3
Denklemin çözümünü bulmak için a-3=0 ifadesini çözün.
2a^{2}-12a+18=0
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
a=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 18}}{2\times 2}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden denklem formülünde a yerine 2, b yerine -12 ve c yerine 18 değerini koyarak çözün.
a=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 18}}{2\times 2}
-12 sayısının karesi.
a=\frac{-\left(-12\right)±\sqrt{144-8\times 18}}{2\times 2}
-4 ile 2 sayısını çarpın.
a=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 2}
-8 ile 18 sayısını çarpın.
a=\frac{-\left(-12\right)±\sqrt{0}}{2\times 2}
-144 ile 144 sayısını toplayın.
a=-\frac{-12}{2\times 2}
0 sayısının karekökünü alın.
a=\frac{12}{2\times 2}
-12 sayısının tersi: 12.
a=\frac{12}{4}
2 ile 2 sayısını çarpın.
a=3
12 sayısını 4 ile bölün.
2a^{2}-12a+18=0
Buna benzer karesel denklemler, kareyi tamamlayarak çözülebilir. Kareyi tamamlamak için denklemin x^{2}+bx=c biçiminde olması gerekir.
2a^{2}-12a+18-18=-18
Denklemin her iki tarafından 18 çıkarın.
2a^{2}-12a=-18
18 kendisinden çıkarıldığında 0 kalır.
\frac{2a^{2}-12a}{2}=-\frac{18}{2}
Her iki tarafı 2 ile bölün.
a^{2}+\left(-\frac{12}{2}\right)a=-\frac{18}{2}
2 ile bölme, 2 ile çarpma işlemini geri alır.
a^{2}-6a=-\frac{18}{2}
-12 sayısını 2 ile bölün.
a^{2}-6a=-9
-18 sayısını 2 ile bölün.
a^{2}-6a+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
x teriminin katsayısı olan -6 sayısını 2 değerine bölerek -3 sonucunu elde edin. Sonra, denklemin her iki tarafına -3 sayısının karesini ekleyin. Bu adım, denklemin sol tarafının tam kare olmasını sağlar.
a^{2}-6a+9=-9+9
-3 sayısının karesi.
a^{2}-6a+9=0
9 ile -9 sayısını toplayın.
\left(a-3\right)^{2}=0
Faktör a^{2}-6a+9. Genel olarak, x^{2}+bx+c bir kare olduğunda, her zaman kare olarak \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-3\right)^{2}}=\sqrt{0}
Denklemin her iki tarafının kare kökünü alın.
a-3=0 a-3=0
Sadeleştirin.
a=3 a=3
Denklemin her iki tarafına 3 ekleyin.
a=3
Denklem çözüldü. Çözümleri aynı.