Ana içeriğe geç
x için çözün
Tick mark Image
Grafik

Web Aramasından Benzer Problemler

Paylaş

3x+x^{2}=180
Tüm değişken terimler sol tarafta kalacak şekilde yer değiştirin.
3x+x^{2}-180=0
Her iki taraftan 180 sayısını çıkarın.
x^{2}+3x-180=0
Standart biçime dönüştürmek için polinomu yeniden düzenleyin. Terimleri üslerine göre azalan düzende sıralayın.
a+b=3 ab=-180
Denklemi çözmek için x^{2}+3x-180 formül x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) 'ni kullanarak faktörü yapın. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
-1,180 -2,90 -3,60 -4,45 -5,36 -6,30 -9,20 -10,18 -12,15
ab negatif olduğundan a ve b ters işaretlere sahip. a+b pozitif olduğundan, pozitif sayı negatif boyuttan daha büyük mutlak değer içeriyor. Çarpımı -180 olan tam sayı çiftlerini listeleyin.
-1+180=179 -2+90=88 -3+60=57 -4+45=41 -5+36=31 -6+30=24 -9+20=11 -10+18=8 -12+15=3
Her çiftin toplamını hesaplayın.
a=-12 b=15
Çözüm, 3 toplamını veren çifttir.
\left(x-12\right)\left(x+15\right)
Alınan değerleri kullanarak \left(x+a\right)\left(x+b\right), bu ifadeyi yeniden yazın.
x=12 x=-15
Denklem çözümlerini bulmak için x-12=0 ve x+15=0 çözün.
3x+x^{2}=180
Tüm değişken terimler sol tarafta kalacak şekilde yer değiştirin.
3x+x^{2}-180=0
Her iki taraftan 180 sayısını çıkarın.
x^{2}+3x-180=0
Standart biçime dönüştürmek için polinomu yeniden düzenleyin. Terimleri üslerine göre azalan düzende sıralayın.
a+b=3 ab=1\left(-180\right)=-180
Denklemi çözmek için sol tarafı gruplandırarak çarpanlarına ayırın. Öncelikle sol tarafın x^{2}+ax+bx-180 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
-1,180 -2,90 -3,60 -4,45 -5,36 -6,30 -9,20 -10,18 -12,15
ab negatif olduğundan a ve b ters işaretlere sahip. a+b pozitif olduğundan, pozitif sayı negatif boyuttan daha büyük mutlak değer içeriyor. Çarpımı -180 olan tam sayı çiftlerini listeleyin.
-1+180=179 -2+90=88 -3+60=57 -4+45=41 -5+36=31 -6+30=24 -9+20=11 -10+18=8 -12+15=3
Her çiftin toplamını hesaplayın.
a=-12 b=15
Çözüm, 3 toplamını veren çifttir.
\left(x^{2}-12x\right)+\left(15x-180\right)
x^{2}+3x-180 ifadesini \left(x^{2}-12x\right)+\left(15x-180\right) olarak yeniden yazın.
x\left(x-12\right)+15\left(x-12\right)
İkinci gruptaki ilk ve 15 x çarpanlarına ayırın.
\left(x-12\right)\left(x+15\right)
Dağılma özelliği kullanarak x-12 ortak terimi parantezine alın.
x=12 x=-15
Denklem çözümlerini bulmak için x-12=0 ve x+15=0 çözün.
3x+x^{2}=180
Tüm değişken terimler sol tarafta kalacak şekilde yer değiştirin.
3x+x^{2}-180=0
Her iki taraftan 180 sayısını çıkarın.
x^{2}+3x-180=0
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-3±\sqrt{3^{2}-4\left(-180\right)}}{2}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden denklem formülünde a yerine 1, b yerine 3 ve c yerine -180 değerini koyarak çözün.
x=\frac{-3±\sqrt{9-4\left(-180\right)}}{2}
3 sayısının karesi.
x=\frac{-3±\sqrt{9+720}}{2}
-4 ile -180 sayısını çarpın.
x=\frac{-3±\sqrt{729}}{2}
720 ile 9 sayısını toplayın.
x=\frac{-3±27}{2}
729 sayısının karekökünü alın.
x=\frac{24}{2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{-3±27}{2} denklemini çözün. 27 ile -3 sayısını toplayın.
x=12
24 sayısını 2 ile bölün.
x=-\frac{30}{2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{-3±27}{2} denklemini çözün. 27 sayısını -3 sayısından çıkarın.
x=-15
-30 sayısını 2 ile bölün.
x=12 x=-15
Denklem çözüldü.
3x+x^{2}=180
Tüm değişken terimler sol tarafta kalacak şekilde yer değiştirin.
x^{2}+3x=180
Buna benzer karesel denklemler, kareyi tamamlayarak çözülebilir. Kareyi tamamlamak için denklemin x^{2}+bx=c biçiminde olması gerekir.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=180+\left(\frac{3}{2}\right)^{2}
x teriminin katsayısı olan 3 sayısını 2 değerine bölerek \frac{3}{2} sonucunu elde edin. Sonra, denklemin her iki tarafına \frac{3}{2} sayısının karesini ekleyin. Bu adım, denklemin sol tarafının tam kare olmasını sağlar.
x^{2}+3x+\frac{9}{4}=180+\frac{9}{4}
\frac{3}{2} kesrinin karesini almak için hem payın hem de paydanın karesini alın.
x^{2}+3x+\frac{9}{4}=\frac{729}{4}
\frac{9}{4} ile 180 sayısını toplayın.
\left(x+\frac{3}{2}\right)^{2}=\frac{729}{4}
Faktör x^{2}+3x+\frac{9}{4}. Genel olarak, x^{2}+bx+c bir kare olduğunda, her zaman kare olarak \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{729}{4}}
Denklemin her iki tarafının kare kökünü alın.
x+\frac{3}{2}=\frac{27}{2} x+\frac{3}{2}=-\frac{27}{2}
Sadeleştirin.
x=12 x=-15
Denklemin her iki tarafından \frac{3}{2} çıkarın.