Ana içeriğe geç
x için çözün
Tick mark Image
Grafik

Web Aramasından Benzer Problemler

Paylaş

-x^{2}+2x+3=0
Tüm değişken terimler sol tarafta kalacak şekilde yer değiştirin.
a+b=2 ab=-3=-3
Denklemi çözmek için sol tarafı gruplandırarak çarpanlarına ayırın. Öncelikle sol tarafın -x^{2}+ax+bx+3 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
a=3 b=-1
ab negatif olduğundan a ve b ters işaretlere sahip. a+b pozitif olduğundan, pozitif sayı negatif boyuttan daha büyük mutlak değer içeriyor. Bu tür bir çift sistem çözümüdür.
\left(-x^{2}+3x\right)+\left(-x+3\right)
-x^{2}+2x+3 ifadesini \left(-x^{2}+3x\right)+\left(-x+3\right) olarak yeniden yazın.
-x\left(x-3\right)-\left(x-3\right)
İkinci gruptaki ilk ve -1 -x çarpanlarına ayırın.
\left(x-3\right)\left(-x-1\right)
Dağılma özelliği kullanarak x-3 ortak terimi parantezine alın.
x=3 x=-1
Denklem çözümlerini bulmak için x-3=0 ve -x-1=0 çözün.
-x^{2}+2x+3=0
Tüm değişken terimler sol tarafta kalacak şekilde yer değiştirin.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden denklem formülünde a yerine -1, b yerine 2 ve c yerine 3 değerini koyarak çözün.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
2 sayısının karesi.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
-4 ile -1 sayısını çarpın.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
4 ile 3 sayısını çarpın.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
12 ile 4 sayısını toplayın.
x=\frac{-2±4}{2\left(-1\right)}
16 sayısının karekökünü alın.
x=\frac{-2±4}{-2}
2 ile -1 sayısını çarpın.
x=\frac{2}{-2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{-2±4}{-2} denklemini çözün. 4 ile -2 sayısını toplayın.
x=-1
2 sayısını -2 ile bölün.
x=-\frac{6}{-2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{-2±4}{-2} denklemini çözün. 4 sayısını -2 sayısından çıkarın.
x=3
-6 sayısını -2 ile bölün.
x=-1 x=3
Denklem çözüldü.
-x^{2}+2x+3=0
Tüm değişken terimler sol tarafta kalacak şekilde yer değiştirin.
-x^{2}+2x=-3
Her iki taraftan 3 sayısını çıkarın. Bir sayı sıfırdan çıkarılırsa sonuç o sayının negatifine eşit olur.
\frac{-x^{2}+2x}{-1}=-\frac{3}{-1}
Her iki tarafı -1 ile bölün.
x^{2}+\frac{2}{-1}x=-\frac{3}{-1}
-1 ile bölme, -1 ile çarpma işlemini geri alır.
x^{2}-2x=-\frac{3}{-1}
2 sayısını -1 ile bölün.
x^{2}-2x=3
-3 sayısını -1 ile bölün.
x^{2}-2x+1=3+1
x teriminin katsayısı olan -2 sayısını 2 değerine bölerek -1 sonucunu elde edin. Sonra, denklemin her iki tarafına -1 sayısının karesini ekleyin. Bu adım, denklemin sol tarafının tam kare olmasını sağlar.
x^{2}-2x+1=4
1 ile 3 sayısını toplayın.
\left(x-1\right)^{2}=4
Faktör x^{2}-2x+1. Genel olarak, x^{2}+bx+c bir kare olduğunda, her zaman kare olarak \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Denklemin her iki tarafının kare kökünü alın.
x-1=2 x-1=-2
Sadeleştirin.
x=3 x=-1
Denklemin her iki tarafına 1 ekleyin.