x için çözün
x=-1
x=4
Grafik
Paylaş
Panoya kopyalandı
-x^{2}+4x-x=-4
Her iki taraftan x sayısını çıkarın.
-x^{2}+3x=-4
4x ve -x terimlerini birleştirerek 3x sonucunu elde edin.
-x^{2}+3x+4=0
Her iki tarafa 4 ekleyin.
a+b=3 ab=-4=-4
Denklemi çözmek için sol tarafı gruplandırarak çarpanlarına ayırın. Öncelikle sol tarafın -x^{2}+ax+bx+4 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
-1,4 -2,2
ab negatif olduğundan a ve b ters işaretlere sahip. a+b pozitif olduğundan, pozitif sayı negatif boyuttan daha büyük mutlak değer içeriyor. Çarpımı -4 olan tam sayı çiftlerini listeleyin.
-1+4=3 -2+2=0
Her çiftin toplamını hesaplayın.
a=4 b=-1
Çözüm, 3 toplamını veren çifttir.
\left(-x^{2}+4x\right)+\left(-x+4\right)
-x^{2}+3x+4 ifadesini \left(-x^{2}+4x\right)+\left(-x+4\right) olarak yeniden yazın.
-x\left(x-4\right)-\left(x-4\right)
İkinci gruptaki ilk ve -1 -x çarpanlarına ayırın.
\left(x-4\right)\left(-x-1\right)
Dağılma özelliği kullanarak x-4 ortak terimi parantezine alın.
x=4 x=-1
Denklem çözümlerini bulmak için x-4=0 ve -x-1=0 çözün.
-x^{2}+4x-x=-4
Her iki taraftan x sayısını çıkarın.
-x^{2}+3x=-4
4x ve -x terimlerini birleştirerek 3x sonucunu elde edin.
-x^{2}+3x+4=0
Her iki tarafa 4 ekleyin.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden denklem formülünde a yerine -1, b yerine 3 ve c yerine 4 değerini koyarak çözün.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 4}}{2\left(-1\right)}
3 sayısının karesi.
x=\frac{-3±\sqrt{9+4\times 4}}{2\left(-1\right)}
-4 ile -1 sayısını çarpın.
x=\frac{-3±\sqrt{9+16}}{2\left(-1\right)}
4 ile 4 sayısını çarpın.
x=\frac{-3±\sqrt{25}}{2\left(-1\right)}
16 ile 9 sayısını toplayın.
x=\frac{-3±5}{2\left(-1\right)}
25 sayısının karekökünü alın.
x=\frac{-3±5}{-2}
2 ile -1 sayısını çarpın.
x=\frac{2}{-2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{-3±5}{-2} denklemini çözün. 5 ile -3 sayısını toplayın.
x=-1
2 sayısını -2 ile bölün.
x=-\frac{8}{-2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{-3±5}{-2} denklemini çözün. 5 sayısını -3 sayısından çıkarın.
x=4
-8 sayısını -2 ile bölün.
x=-1 x=4
Denklem çözüldü.
-x^{2}+4x-x=-4
Her iki taraftan x sayısını çıkarın.
-x^{2}+3x=-4
4x ve -x terimlerini birleştirerek 3x sonucunu elde edin.
\frac{-x^{2}+3x}{-1}=-\frac{4}{-1}
Her iki tarafı -1 ile bölün.
x^{2}+\frac{3}{-1}x=-\frac{4}{-1}
-1 ile bölme, -1 ile çarpma işlemini geri alır.
x^{2}-3x=-\frac{4}{-1}
3 sayısını -1 ile bölün.
x^{2}-3x=4
-4 sayısını -1 ile bölün.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
x teriminin katsayısı olan -3 sayısını 2 değerine bölerek -\frac{3}{2} sonucunu elde edin. Sonra, denklemin her iki tarafına -\frac{3}{2} sayısının karesini ekleyin. Bu adım, denklemin sol tarafının tam kare olmasını sağlar.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
-\frac{3}{2} kesrinin karesini almak için hem payın hem de paydanın karesini alın.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
\frac{9}{4} ile 4 sayısını toplayın.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
Faktör x^{2}-3x+\frac{9}{4}. Genel olarak, x^{2}+bx+c bir kare olduğunda, her zaman kare olarak \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Denklemin her iki tarafının kare kökünü alın.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
Sadeleştirin.
x=4 x=-1
Denklemin her iki tarafına \frac{3}{2} ekleyin.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}