Türevini al: w.r.t. x
\frac{1}{\sqrt{2x+1}}
Hesapla
\sqrt{2x+1}
Grafik
Paylaş
Panoya kopyalandı
\frac{1}{2}\left(2x^{1}+1\right)^{\frac{1}{2}-1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+1)
F, iki türevlenebilir işlevin (f\left(u\right) ve u=g\left(x\right)) birleşimiyse, yani F\left(x\right)=f\left(g\left(x\right)\right) ise, bu durumda F türevi, u ifadesine göre f türevi ile x ifadesine göre g türevinin çarpımıdır, yani \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{1}{2}\left(2x^{1}+1\right)^{-\frac{1}{2}}\times 2x^{1-1}
Bir polinomun türevi, terimlerinin türevleri toplamıdır. Bir sabit terimin türevi 0 değerini verir. ax^{n} ifadesinin türevi: nax^{n-1}.
x^{0}\left(2x^{1}+1\right)^{-\frac{1}{2}}
Sadeleştirin.
x^{0}\left(2x+1\right)^{-\frac{1}{2}}
Herhangi bir t terimi için t^{1}=t.
1\left(2x+1\right)^{-\frac{1}{2}}
0 dışındaki herhangi bir t terimi için t^{0}=1.
\left(2x+1\right)^{-\frac{1}{2}}
Herhangi bir t terimi için t\times 1=t ve 1t=t.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}