Ana içeriğe geç
Çarpanlara Ayır
Tick mark Image
Hesapla
Tick mark Image
Grafik

Web Aramasından Benzer Problemler

Paylaş

x^{2}-4x+1=0
İkinci dereceden polinomsal ifadeler ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) dönüşümü kullanılarak çarpanlarına ayrılabilir. Burada x_{1} ve x_{2} ikinci dereceden ax^{2}+bx+c=0 denkleminin çözümleridir.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4}}{2}
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-\left(-4\right)±\sqrt{16-4}}{2}
-4 sayısının karesi.
x=\frac{-\left(-4\right)±\sqrt{12}}{2}
-4 ile 16 sayısını toplayın.
x=\frac{-\left(-4\right)±2\sqrt{3}}{2}
12 sayısının karekökünü alın.
x=\frac{4±2\sqrt{3}}{2}
-4 sayısının tersi: 4.
x=\frac{2\sqrt{3}+4}{2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{4±2\sqrt{3}}{2} denklemini çözün. 2\sqrt{3} ile 4 sayısını toplayın.
x=\sqrt{3}+2
4+2\sqrt{3} sayısını 2 ile bölün.
x=\frac{4-2\sqrt{3}}{2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{4±2\sqrt{3}}{2} denklemini çözün. 2\sqrt{3} sayısını 4 sayısından çıkarın.
x=2-\sqrt{3}
4-2\sqrt{3} sayısını 2 ile bölün.
x^{2}-4x+1=\left(x-\left(\sqrt{3}+2\right)\right)\left(x-\left(2-\sqrt{3}\right)\right)
Özgün ifadeyi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) kullanarak çarpanlarına ayırın. 2+\sqrt{3} yerine x_{1}, 2-\sqrt{3} yerine ise x_{2} koyun.