Ana içeriğe geç
Çarpanlara Ayır
Tick mark Image
Hesapla
Tick mark Image
Grafik

Web Aramasından Benzer Problemler

Paylaş

x^{2}-6x-27
Standart biçime dönüştürmek için polinomu yeniden düzenleyin. Terimleri üslerine göre azalan düzende sıralayın.
a+b=-6 ab=1\left(-27\right)=-27
İfadeyi gruplandırarak çarpanlarına ayırın. Öncelikle ifadenin x^{2}+ax+bx-27 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
1,-27 3,-9
ab negatif olduğundan a ve b ters işaretlere sahip. a+b negatif olduğundan, negatif sayı sıfırdan büyük bir mutlak değer içeriyor. Çarpımı -27 olan tam sayı çiftlerini listeleyin.
1-27=-26 3-9=-6
Her çiftin toplamını hesaplayın.
a=-9 b=3
Çözüm, -6 toplamını veren çifttir.
\left(x^{2}-9x\right)+\left(3x-27\right)
x^{2}-6x-27 ifadesini \left(x^{2}-9x\right)+\left(3x-27\right) olarak yeniden yazın.
x\left(x-9\right)+3\left(x-9\right)
İkinci gruptaki ilk ve 3 x çarpanlarına ayırın.
\left(x-9\right)\left(x+3\right)
Dağılma özelliği kullanarak x-9 ortak terimi parantezine alın.
x^{2}-6x-27=0
İkinci dereceden polinomsal ifadeler ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) dönüşümü kullanılarak çarpanlarına ayrılabilir. Burada x_{1} ve x_{2} ikinci dereceden ax^{2}+bx+c=0 denkleminin çözümleridir.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-27\right)}}{2}
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-27\right)}}{2}
-6 sayısının karesi.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2}
-4 ile -27 sayısını çarpın.
x=\frac{-\left(-6\right)±\sqrt{144}}{2}
108 ile 36 sayısını toplayın.
x=\frac{-\left(-6\right)±12}{2}
144 sayısının karekökünü alın.
x=\frac{6±12}{2}
-6 sayısının tersi: 6.
x=\frac{18}{2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{6±12}{2} denklemini çözün. 12 ile 6 sayısını toplayın.
x=9
18 sayısını 2 ile bölün.
x=-\frac{6}{2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{6±12}{2} denklemini çözün. 12 sayısını 6 sayısından çıkarın.
x=-3
-6 sayısını 2 ile bölün.
x^{2}-6x-27=\left(x-9\right)\left(x-\left(-3\right)\right)
Özgün ifadeyi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) kullanarak çarpanlarına ayırın. 9 yerine x_{1}, -3 yerine ise x_{2} koyun.
x^{2}-6x-27=\left(x-9\right)\left(x+3\right)
p-\left(-q\right) biçimindeki tüm ifadeleri p+q biçiminde olacak şekilde sadeleştirin.