x için çözün
x=8
x=13
Grafik
Paylaş
Panoya kopyalandı
a+b=-21 ab=104
Denklemi çözmek için x^{2}-21x+104 formül x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) 'ni kullanarak faktörü yapın. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
-1,-104 -2,-52 -4,-26 -8,-13
ab pozitif olduğundan a ve b aynı işarete sahip. a+b negatif olduğundan a ve b her ikisi de negatiftir. Çarpımı 104 olan tam sayı çiftlerini listeleyin.
-1-104=-105 -2-52=-54 -4-26=-30 -8-13=-21
Her çiftin toplamını hesaplayın.
a=-13 b=-8
Çözüm, -21 toplamını veren çifttir.
\left(x-13\right)\left(x-8\right)
Alınan değerleri kullanarak \left(x+a\right)\left(x+b\right), bu ifadeyi yeniden yazın.
x=13 x=8
Denklem çözümlerini bulmak için x-13=0 ve x-8=0 çözün.
a+b=-21 ab=1\times 104=104
Denklemi çözmek için sol tarafı gruplandırarak çarpanlarına ayırın. Öncelikle sol tarafın x^{2}+ax+bx+104 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
-1,-104 -2,-52 -4,-26 -8,-13
ab pozitif olduğundan a ve b aynı işarete sahip. a+b negatif olduğundan a ve b her ikisi de negatiftir. Çarpımı 104 olan tam sayı çiftlerini listeleyin.
-1-104=-105 -2-52=-54 -4-26=-30 -8-13=-21
Her çiftin toplamını hesaplayın.
a=-13 b=-8
Çözüm, -21 toplamını veren çifttir.
\left(x^{2}-13x\right)+\left(-8x+104\right)
x^{2}-21x+104 ifadesini \left(x^{2}-13x\right)+\left(-8x+104\right) olarak yeniden yazın.
x\left(x-13\right)-8\left(x-13\right)
İkinci gruptaki ilk ve -8 x çarpanlarına ayırın.
\left(x-13\right)\left(x-8\right)
Dağılma özelliği kullanarak x-13 ortak terimi parantezine alın.
x=13 x=8
Denklem çözümlerini bulmak için x-13=0 ve x-8=0 çözün.
x^{2}-21x+104=0
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 104}}{2}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden denklem formülünde a yerine 1, b yerine -21 ve c yerine 104 değerini koyarak çözün.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 104}}{2}
-21 sayısının karesi.
x=\frac{-\left(-21\right)±\sqrt{441-416}}{2}
-4 ile 104 sayısını çarpın.
x=\frac{-\left(-21\right)±\sqrt{25}}{2}
-416 ile 441 sayısını toplayın.
x=\frac{-\left(-21\right)±5}{2}
25 sayısının karekökünü alın.
x=\frac{21±5}{2}
-21 sayısının tersi: 21.
x=\frac{26}{2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{21±5}{2} denklemini çözün. 5 ile 21 sayısını toplayın.
x=13
26 sayısını 2 ile bölün.
x=\frac{16}{2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{21±5}{2} denklemini çözün. 5 sayısını 21 sayısından çıkarın.
x=8
16 sayısını 2 ile bölün.
x=13 x=8
Denklem çözüldü.
x^{2}-21x+104=0
Buna benzer karesel denklemler, kareyi tamamlayarak çözülebilir. Kareyi tamamlamak için denklemin x^{2}+bx=c biçiminde olması gerekir.
x^{2}-21x+104-104=-104
Denklemin her iki tarafından 104 çıkarın.
x^{2}-21x=-104
104 kendisinden çıkarıldığında 0 kalır.
x^{2}-21x+\left(-\frac{21}{2}\right)^{2}=-104+\left(-\frac{21}{2}\right)^{2}
x teriminin katsayısı olan -21 sayısını 2 değerine bölerek -\frac{21}{2} sonucunu elde edin. Sonra, denklemin her iki tarafına -\frac{21}{2} sayısının karesini ekleyin. Bu adım, denklemin sol tarafının tam kare olmasını sağlar.
x^{2}-21x+\frac{441}{4}=-104+\frac{441}{4}
-\frac{21}{2} kesrinin karesini almak için hem payın hem de paydanın karesini alın.
x^{2}-21x+\frac{441}{4}=\frac{25}{4}
\frac{441}{4} ile -104 sayısını toplayın.
\left(x-\frac{21}{2}\right)^{2}=\frac{25}{4}
Faktör x^{2}-21x+\frac{441}{4}. Genel olarak, x^{2}+bx+c bir kare olduğunda, her zaman kare olarak \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Denklemin her iki tarafının kare kökünü alın.
x-\frac{21}{2}=\frac{5}{2} x-\frac{21}{2}=-\frac{5}{2}
Sadeleştirin.
x=13 x=8
Denklemin her iki tarafına \frac{21}{2} ekleyin.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}