Ana içeriğe geç
x için çözün
Tick mark Image
Grafik

Web Aramasından Benzer Problemler

Paylaş

9801+x^{2}=125^{2}
2 sayısının 99 kuvvetini hesaplayarak 9801 sonucunu bulun.
9801+x^{2}=15625
2 sayısının 125 kuvvetini hesaplayarak 15625 sonucunu bulun.
x^{2}=15625-9801
Her iki taraftan 9801 sayısını çıkarın.
x^{2}=5824
15625 sayısından 9801 sayısını çıkarıp 5824 sonucunu bulun.
x=8\sqrt{91} x=-8\sqrt{91}
Denklemin her iki tarafının kare kökünü alın.
9801+x^{2}=125^{2}
2 sayısının 99 kuvvetini hesaplayarak 9801 sonucunu bulun.
9801+x^{2}=15625
2 sayısının 125 kuvvetini hesaplayarak 15625 sonucunu bulun.
9801+x^{2}-15625=0
Her iki taraftan 15625 sayısını çıkarın.
-5824+x^{2}=0
9801 sayısından 15625 sayısını çıkarıp -5824 sonucunu bulun.
x^{2}-5824=0
x^{2} terimini içeren, ancak x terimi içermeyen buna benzer karesel denklemler, \frac{-b±\sqrt{b^{2}-4ac}}{2a} karesel formülü kullanılarak ax^{2}+bx+c=0 standart biçimine getirildikten sonra çözülebilir.
x=\frac{0±\sqrt{0^{2}-4\left(-5824\right)}}{2}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden formülünde a yerine 1, b yerine 0 ve c yerine -5824 değerini koyarak çözün.
x=\frac{0±\sqrt{-4\left(-5824\right)}}{2}
0 sayısının karesi.
x=\frac{0±\sqrt{23296}}{2}
-4 ile -5824 sayısını çarpın.
x=\frac{0±16\sqrt{91}}{2}
23296 sayısının karekökünü alın.
x=8\sqrt{91}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{0±16\sqrt{91}}{2} denklemini çözün.
x=-8\sqrt{91}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{0±16\sqrt{91}}{2} denklemini çözün.
x=8\sqrt{91} x=-8\sqrt{91}
Denklem çözüldü.