Ana içeriğe geç
Hesapla
Tick mark Image
Türevini al: w.r.t. x
Tick mark Image

Web Aramasından Benzer Problemler

Paylaş

\int 2x\left(\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
\left(x^{2}+1\right)^{3} ifadesini genişletmek için \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} binom teoremini kullanın.
\int 2x\left(x^{6}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
Bir sayının üssünün başka bir sayıya üssünü almak için üsleri çarpın. 3 ile 2 çarpıldığında 6 elde edilir.
\int 2x\left(x^{6}+3x^{4}+3x^{2}+1\right)\mathrm{d}x
Bir sayının üssünün başka bir sayıya üssünü almak için üsleri çarpın. 2 ile 2 çarpıldığında 4 elde edilir.
\int 2x^{7}+6x^{5}+6x^{3}+2x\mathrm{d}x
2x sayısını x^{6}+3x^{4}+3x^{2}+1 ile çarpmak için dağılma özelliğini kullanın.
\int 2x^{7}\mathrm{d}x+\int 6x^{5}\mathrm{d}x+\int 6x^{3}\mathrm{d}x+\int 2x\mathrm{d}x
Toplamı terim terim tümleştirin.
2\int x^{7}\mathrm{d}x+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Terimlerin her birinde sabiti ortak çarpan parantezine alın.
\frac{x^{8}}{4}+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
k\neq -1 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} bu yana \int x^{7}\mathrm{d}x \frac{x^{8}}{8} ile değiştirin. 2 ile \frac{x^{8}}{8} sayısını çarpın.
\frac{x^{8}}{4}+x^{6}+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
k\neq -1 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} bu yana \int x^{5}\mathrm{d}x \frac{x^{6}}{6} ile değiştirin. 6 ile \frac{x^{6}}{6} sayısını çarpın.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+2\int x\mathrm{d}x
k\neq -1 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} bu yana \int x^{3}\mathrm{d}x \frac{x^{4}}{4} ile değiştirin. 6 ile \frac{x^{4}}{4} sayısını çarpın.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+x^{2}
k\neq -1 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} bu yana \int x\mathrm{d}x \frac{x^{2}}{2} ile değiştirin. 2 ile \frac{x^{2}}{2} sayısını çarpın.
x^{2}+\frac{3x^{4}}{2}+x^{6}+\frac{x^{8}}{4}+С
F\left(x\right) f\left(x\right) ' in bir parçası ise, f\left(x\right) tüm antitürevleri kümesi F\left(x\right)+C tarafından verilir. Bu nedenle, C\in \mathrm{R} tümleştirme sabitini sonuca ekleyin.