Ana içeriğe geç
Hesapla
Tick mark Image
Türevini al: w.r.t. x
Tick mark Image

Web Aramasından Benzer Problemler

Paylaş

\int x^{2}\left(x^{3}+3x^{2}+3x+1\right)\mathrm{d}x
\left(x+1\right)^{3} ifadesini genişletmek için \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} binom teoremini kullanın.
\int x^{5}+3x^{4}+3x^{3}+x^{2}\mathrm{d}x
x^{2} sayısını x^{3}+3x^{2}+3x+1 ile çarpmak için dağılma özelliğini kullanın.
\int x^{5}\mathrm{d}x+\int 3x^{4}\mathrm{d}x+\int 3x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
Toplamı terim terim tümleştirin.
\int x^{5}\mathrm{d}x+3\int x^{4}\mathrm{d}x+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
Terimlerin her birinde sabiti ortak çarpan parantezine alın.
\frac{x^{6}}{6}+3\int x^{4}\mathrm{d}x+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
k\neq -1 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} bu yana \int x^{5}\mathrm{d}x \frac{x^{6}}{6} ile değiştirin.
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
k\neq -1 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} bu yana \int x^{4}\mathrm{d}x \frac{x^{5}}{5} ile değiştirin. 3 ile \frac{x^{5}}{5} sayısını çarpın.
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+\frac{3x^{4}}{4}+\int x^{2}\mathrm{d}x
k\neq -1 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} bu yana \int x^{3}\mathrm{d}x \frac{x^{4}}{4} ile değiştirin. 3 ile \frac{x^{4}}{4} sayısını çarpın.
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+\frac{3x^{4}}{4}+\frac{x^{3}}{3}
k\neq -1 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} bu yana \int x^{2}\mathrm{d}x \frac{x^{3}}{3} ile değiştirin.
\frac{x^{3}}{3}+\frac{3x^{4}}{4}+\frac{3x^{5}}{5}+\frac{x^{6}}{6}
Sadeleştirin.
\frac{x^{3}}{3}+\frac{3x^{4}}{4}+\frac{3x^{5}}{5}+\frac{x^{6}}{6}+С
F\left(x\right) f\left(x\right) ' in bir parçası ise, f\left(x\right) tüm antitürevleri kümesi F\left(x\right)+C tarafından verilir. Bu nedenle, C\in \mathrm{R} tümleştirme sabitini sonuca ekleyin.