Hesapla
-\frac{2}{3}\approx -0,666666667
Paylaş
Panoya kopyalandı
\int _{-1}^{1}y-y^{2}\mathrm{d}y
1-y sayısını y ile çarpmak için dağılma özelliğini kullanın.
\int y-y^{2}\mathrm{d}y
Önce belirli integrali hesaplayın.
\int y\mathrm{d}y+\int -y^{2}\mathrm{d}y
Toplamı terim terim tümleştirin.
\int y\mathrm{d}y-\int y^{2}\mathrm{d}y
Terimlerin her birinde sabiti ortak çarpan parantezine alın.
\frac{y^{2}}{2}-\int y^{2}\mathrm{d}y
k\neq -1 \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} bu yana \int y\mathrm{d}y \frac{y^{2}}{2} ile değiştirin.
\frac{y^{2}}{2}-\frac{y^{3}}{3}
k\neq -1 \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} bu yana \int y^{2}\mathrm{d}y \frac{y^{3}}{3} ile değiştirin. -1 ile \frac{y^{3}}{3} sayısını çarpın.
\frac{1^{2}}{2}-\frac{1^{3}}{3}-\left(\frac{\left(-1\right)^{2}}{2}-\frac{\left(-1\right)^{3}}{3}\right)
Bir polinomun belirli integrali, integralin üst limitinde hesaplanan polinomun ters türevinden integralin alt limitinde hesaplanan ters türev çıkarılarak hesaplanmasıdır.
-\frac{2}{3}
Sadeleştirin.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}