Hesapla
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+14x+С
Türevini al: w.r.t. x
\left(3x+7\right)\left(x^{2}+4x+2\right)
Paylaş
Panoya kopyalandı
\int -3\left(-x^{2}\right)x-7\left(-x^{2}\right)+12x^{2}+34x+14\mathrm{d}x
-x^{2}-4x-2 ile -3x-7 ifadesini çarpmak için dağılma özelliğini kullanın ve benzer terimleri birleştirin.
\int 3x^{2}x-7\left(-x^{2}\right)+12x^{2}+34x+14\mathrm{d}x
-3 ve -1 sayılarını çarparak 3 sonucunu bulun.
\int 3x^{3}-7\left(-x^{2}\right)+12x^{2}+34x+14\mathrm{d}x
Aynı tabana sahip üslü ifadeleri çarpmak için üs değerlerini toplayın. 1 ile 2 toplandığında 3 elde edilir.
\int 3x^{3}+7x^{2}+12x^{2}+34x+14\mathrm{d}x
-7 ve -1 sayılarını çarparak 7 sonucunu bulun.
\int 3x^{3}+19x^{2}+34x+14\mathrm{d}x
7x^{2} ve 12x^{2} terimlerini birleştirerek 19x^{2} sonucunu elde edin.
\int 3x^{3}\mathrm{d}x+\int 19x^{2}\mathrm{d}x+\int 34x\mathrm{d}x+\int 14\mathrm{d}x
Toplamı terim terim tümleştirin.
3\int x^{3}\mathrm{d}x+19\int x^{2}\mathrm{d}x+34\int x\mathrm{d}x+\int 14\mathrm{d}x
Terimlerin her birinde sabiti ortak çarpan parantezine alın.
\frac{3x^{4}}{4}+19\int x^{2}\mathrm{d}x+34\int x\mathrm{d}x+\int 14\mathrm{d}x
k\neq -1 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} bu yana \int x^{3}\mathrm{d}x \frac{x^{4}}{4} ile değiştirin. 3 ile \frac{x^{4}}{4} sayısını çarpın.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+34\int x\mathrm{d}x+\int 14\mathrm{d}x
k\neq -1 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} bu yana \int x^{2}\mathrm{d}x \frac{x^{3}}{3} ile değiştirin. 19 ile \frac{x^{3}}{3} sayısını çarpın.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+\int 14\mathrm{d}x
k\neq -1 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} bu yana \int x\mathrm{d}x \frac{x^{2}}{2} ile değiştirin. 34 ile \frac{x^{2}}{2} sayısını çarpın.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+14x
14 ortak integralleri kural \int a\mathrm{d}x=ax tablosunu kullanarak bir integral bulun.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+14x+С
F\left(x\right) f\left(x\right) ' in bir parçası ise, f\left(x\right) tüm antitürevleri kümesi F\left(x\right)+C tarafından verilir. Bu nedenle, C\in \mathrm{R} tümleştirme sabitini sonuca ekleyin.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}