x için çözün
x = -\frac{47}{8} = -5\frac{7}{8} = -5,875
x=0
Grafik
Paylaş
Panoya kopyalandı
\frac{1}{4}x-2x\left(x+6\right)=0
-1 ve 2 sayılarını çarparak -2 sonucunu bulun.
\frac{1}{4}x-2x^{2}-12x=0
-2x sayısını x+6 ile çarpmak için dağılma özelliğini kullanın.
-\frac{47}{4}x-2x^{2}=0
\frac{1}{4}x ve -12x terimlerini birleştirerek -\frac{47}{4}x sonucunu elde edin.
x\left(-\frac{47}{4}-2x\right)=0
x ortak çarpan parantezine alın.
x=0 x=-\frac{47}{8}
Denklem çözümlerini bulmak için x=0 ve -\frac{47}{4}-2x=0 çözün.
\frac{1}{4}x-2x\left(x+6\right)=0
-1 ve 2 sayılarını çarparak -2 sonucunu bulun.
\frac{1}{4}x-2x^{2}-12x=0
-2x sayısını x+6 ile çarpmak için dağılma özelliğini kullanın.
-\frac{47}{4}x-2x^{2}=0
\frac{1}{4}x ve -12x terimlerini birleştirerek -\frac{47}{4}x sonucunu elde edin.
-2x^{2}-\frac{47}{4}x=0
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-\left(-\frac{47}{4}\right)±\sqrt{\left(-\frac{47}{4}\right)^{2}}}{2\left(-2\right)}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden denklem formülünde a yerine -2, b yerine -\frac{47}{4} ve c yerine 0 değerini koyarak çözün.
x=\frac{-\left(-\frac{47}{4}\right)±\frac{47}{4}}{2\left(-2\right)}
\left(-\frac{47}{4}\right)^{2} sayısının karekökünü alın.
x=\frac{\frac{47}{4}±\frac{47}{4}}{2\left(-2\right)}
-\frac{47}{4} sayısının tersi: \frac{47}{4}.
x=\frac{\frac{47}{4}±\frac{47}{4}}{-4}
2 ile -2 sayısını çarpın.
x=\frac{\frac{47}{2}}{-4}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{\frac{47}{4}±\frac{47}{4}}{-4} denklemini çözün. Ortak paydayı bularak ve payları toplayarak \frac{47}{4} ile \frac{47}{4} sayısını toplayın. Daha sonra mümkünse kesri en küçük terimlere sadeleştirin.
x=-\frac{47}{8}
\frac{47}{2} sayısını -4 ile bölün.
x=\frac{0}{-4}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{\frac{47}{4}±\frac{47}{4}}{-4} denklemini çözün. Ortak paydayı bularak ve payları çıkararak \frac{47}{4} sayısını \frac{47}{4} sayısından çıkarın. Daha sonra mümkünse kesri en küçük terimlere sadeleştirin.
x=0
0 sayısını -4 ile bölün.
x=-\frac{47}{8} x=0
Denklem çözüldü.
\frac{1}{4}x-2x\left(x+6\right)=0
-1 ve 2 sayılarını çarparak -2 sonucunu bulun.
\frac{1}{4}x-2x^{2}-12x=0
-2x sayısını x+6 ile çarpmak için dağılma özelliğini kullanın.
-\frac{47}{4}x-2x^{2}=0
\frac{1}{4}x ve -12x terimlerini birleştirerek -\frac{47}{4}x sonucunu elde edin.
-2x^{2}-\frac{47}{4}x=0
Buna benzer karesel denklemler, kareyi tamamlayarak çözülebilir. Kareyi tamamlamak için denklemin x^{2}+bx=c biçiminde olması gerekir.
\frac{-2x^{2}-\frac{47}{4}x}{-2}=\frac{0}{-2}
Her iki tarafı -2 ile bölün.
x^{2}+\left(-\frac{\frac{47}{4}}{-2}\right)x=\frac{0}{-2}
-2 ile bölme, -2 ile çarpma işlemini geri alır.
x^{2}+\frac{47}{8}x=\frac{0}{-2}
-\frac{47}{4} sayısını -2 ile bölün.
x^{2}+\frac{47}{8}x=0
0 sayısını -2 ile bölün.
x^{2}+\frac{47}{8}x+\left(\frac{47}{16}\right)^{2}=\left(\frac{47}{16}\right)^{2}
x teriminin katsayısı olan \frac{47}{8} sayısını 2 değerine bölerek \frac{47}{16} sonucunu elde edin. Sonra, denklemin her iki tarafına \frac{47}{16} sayısının karesini ekleyin. Bu adım, denklemin sol tarafının tam kare olmasını sağlar.
x^{2}+\frac{47}{8}x+\frac{2209}{256}=\frac{2209}{256}
\frac{47}{16} kesrinin karesini almak için hem payın hem de paydanın karesini alın.
\left(x+\frac{47}{16}\right)^{2}=\frac{2209}{256}
Faktör x^{2}+\frac{47}{8}x+\frac{2209}{256}. Genel olarak, x^{2}+bx+c bir kare olduğunda, her zaman kare olarak \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{47}{16}\right)^{2}}=\sqrt{\frac{2209}{256}}
Denklemin her iki tarafının kare kökünü alın.
x+\frac{47}{16}=\frac{47}{16} x+\frac{47}{16}=-\frac{47}{16}
Sadeleştirin.
x=0 x=-\frac{47}{8}
Denklemin her iki tarafından \frac{47}{16} çıkarın.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}