Ana içeriğe geç
x için çözün (complex solution)
Tick mark Image
x için çözün
Tick mark Image
Grafik

Web Aramasından Benzer Problemler

Paylaş

\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
x+1 ve x+1 sayılarını çarparak \left(x+1\right)^{2} sonucunu bulun.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
x-1 ve x-1 sayılarını çarparak \left(x-1\right)^{2} sonucunu bulun.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
x^{2}+1 ve x^{2}+1 sayılarını çarparak \left(x^{2}+1\right)^{2} sonucunu bulun.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x+1\right)^{2} ifadesini genişletmek için \left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremini kullanın.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x-1\right)^{2} ifadesini genişletmek için \left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremini kullanın.
\left(\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{4} sayısını x^{2}+2x+1 ile çarpmak için dağılma özelliğini kullanın.
\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+\frac{1}{4}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4} ile x^{2}-2x+1 ifadesini çarpmak için dağılma özelliğini kullanın ve benzer terimleri birleştirin.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{2}+1\right)^{2}
-\frac{1}{2}x^{2} ve x^{2} terimlerini birleştirerek \frac{1}{2}x^{2} sonucunu elde edin.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)
\left(x^{2}+1\right)^{2} ifadesini genişletmek için \left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremini kullanın.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{4}+2x^{2}+1\right)
Bir sayının üssünün başka bir sayıya üssünü almak için üsleri çarpın. 2 ile 2 çarpıldığında 4 elde edilir.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}
\frac{1}{4} sayısını x^{4}+2x^{2}+1 ile çarpmak için dağılma özelliğini kullanın.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Her iki taraftan \frac{1}{4}x^{4} sayısını çıkarın.
\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{2}x^{2}+\frac{1}{4}
\frac{1}{4}x^{4} ve -\frac{1}{4}x^{4} terimlerini birleştirerek 0 sonucunu elde edin.
\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{2}x^{2}=\frac{1}{4}
Her iki taraftan \frac{1}{2}x^{2} sayısını çıkarın.
\frac{1}{4}=\frac{1}{4}
\frac{1}{2}x^{2} ve -\frac{1}{2}x^{2} terimlerini birleştirerek 0 sonucunu elde edin.
\text{true}
\frac{1}{4} ile \frac{1}{4} öğesini karşılaştırın.
x\in \mathrm{C}
Bu, her x için doğrudur.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
x+1 ve x+1 sayılarını çarparak \left(x+1\right)^{2} sonucunu bulun.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
x-1 ve x-1 sayılarını çarparak \left(x-1\right)^{2} sonucunu bulun.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
x^{2}+1 ve x^{2}+1 sayılarını çarparak \left(x^{2}+1\right)^{2} sonucunu bulun.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x+1\right)^{2} ifadesini genişletmek için \left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremini kullanın.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\left(x-1\right)^{2} ifadesini genişletmek için \left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremini kullanın.
\left(\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{4} sayısını x^{2}+2x+1 ile çarpmak için dağılma özelliğini kullanın.
\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+\frac{1}{4}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4} ile x^{2}-2x+1 ifadesini çarpmak için dağılma özelliğini kullanın ve benzer terimleri birleştirin.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{2}+1\right)^{2}
-\frac{1}{2}x^{2} ve x^{2} terimlerini birleştirerek \frac{1}{2}x^{2} sonucunu elde edin.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)
\left(x^{2}+1\right)^{2} ifadesini genişletmek için \left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremini kullanın.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{4}+2x^{2}+1\right)
Bir sayının üssünün başka bir sayıya üssünü almak için üsleri çarpın. 2 ile 2 çarpıldığında 4 elde edilir.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}
\frac{1}{4} sayısını x^{4}+2x^{2}+1 ile çarpmak için dağılma özelliğini kullanın.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Her iki taraftan \frac{1}{4}x^{4} sayısını çıkarın.
\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{2}x^{2}+\frac{1}{4}
\frac{1}{4}x^{4} ve -\frac{1}{4}x^{4} terimlerini birleştirerek 0 sonucunu elde edin.
\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{2}x^{2}=\frac{1}{4}
Her iki taraftan \frac{1}{2}x^{2} sayısını çıkarın.
\frac{1}{4}=\frac{1}{4}
\frac{1}{2}x^{2} ve -\frac{1}{2}x^{2} terimlerini birleştirerek 0 sonucunu elde edin.
\text{true}
\frac{1}{4} ile \frac{1}{4} öğesini karşılaştırın.
x\in \mathrm{R}
Bu, her x için doğrudur.