x için çözün
x=5
Grafik
Paylaş
Panoya kopyalandı
x^{2}-9=2\left(x+3\right)
Sıfıra bölünme tanımlı olmadığından x değişkeni, -3 değerine eşit olamaz. Denklemin her iki tarafını 2\left(x+3\right) ile çarpın.
x^{2}-9=2x+6
2 sayısını x+3 ile çarpmak için dağılma özelliğini kullanın.
x^{2}-9-2x=6
Her iki taraftan 2x sayısını çıkarın.
x^{2}-9-2x-6=0
Her iki taraftan 6 sayısını çıkarın.
x^{2}-15-2x=0
-9 sayısından 6 sayısını çıkarıp -15 sonucunu bulun.
x^{2}-2x-15=0
Standart biçime dönüştürmek için polinomu yeniden düzenleyin. Terimleri üslerine göre azalan düzende sıralayın.
a+b=-2 ab=-15
Denklemi çözmek için x^{2}-2x-15 formül x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) 'ni kullanarak faktörü yapın. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
1,-15 3,-5
ab negatif olduğundan a ve b ters işaretlere sahip. a+b negatif olduğundan, negatif sayı sıfırdan büyük bir mutlak değer içeriyor. Çarpımı -15 olan tam sayı çiftlerini listeleyin.
1-15=-14 3-5=-2
Her çiftin toplamını hesaplayın.
a=-5 b=3
Çözüm, -2 toplamını veren çifttir.
\left(x-5\right)\left(x+3\right)
Alınan değerleri kullanarak \left(x+a\right)\left(x+b\right), bu ifadeyi yeniden yazın.
x=5 x=-3
Denklem çözümlerini bulmak için x-5=0 ve x+3=0 çözün.
x=5
x değişkeni -3 değerine eşit olamaz.
x^{2}-9=2\left(x+3\right)
Sıfıra bölünme tanımlı olmadığından x değişkeni, -3 değerine eşit olamaz. Denklemin her iki tarafını 2\left(x+3\right) ile çarpın.
x^{2}-9=2x+6
2 sayısını x+3 ile çarpmak için dağılma özelliğini kullanın.
x^{2}-9-2x=6
Her iki taraftan 2x sayısını çıkarın.
x^{2}-9-2x-6=0
Her iki taraftan 6 sayısını çıkarın.
x^{2}-15-2x=0
-9 sayısından 6 sayısını çıkarıp -15 sonucunu bulun.
x^{2}-2x-15=0
Standart biçime dönüştürmek için polinomu yeniden düzenleyin. Terimleri üslerine göre azalan düzende sıralayın.
a+b=-2 ab=1\left(-15\right)=-15
Denklemi çözmek için sol tarafı gruplandırarak çarpanlarına ayırın. Öncelikle sol tarafın x^{2}+ax+bx-15 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
1,-15 3,-5
ab negatif olduğundan a ve b ters işaretlere sahip. a+b negatif olduğundan, negatif sayı sıfırdan büyük bir mutlak değer içeriyor. Çarpımı -15 olan tam sayı çiftlerini listeleyin.
1-15=-14 3-5=-2
Her çiftin toplamını hesaplayın.
a=-5 b=3
Çözüm, -2 toplamını veren çifttir.
\left(x^{2}-5x\right)+\left(3x-15\right)
x^{2}-2x-15 ifadesini \left(x^{2}-5x\right)+\left(3x-15\right) olarak yeniden yazın.
x\left(x-5\right)+3\left(x-5\right)
İkinci gruptaki ilk ve 3 x çarpanlarına ayırın.
\left(x-5\right)\left(x+3\right)
Dağılma özelliği kullanarak x-5 ortak terimi parantezine alın.
x=5 x=-3
Denklem çözümlerini bulmak için x-5=0 ve x+3=0 çözün.
x=5
x değişkeni -3 değerine eşit olamaz.
x^{2}-9=2\left(x+3\right)
Sıfıra bölünme tanımlı olmadığından x değişkeni, -3 değerine eşit olamaz. Denklemin her iki tarafını 2\left(x+3\right) ile çarpın.
x^{2}-9=2x+6
2 sayısını x+3 ile çarpmak için dağılma özelliğini kullanın.
x^{2}-9-2x=6
Her iki taraftan 2x sayısını çıkarın.
x^{2}-9-2x-6=0
Her iki taraftan 6 sayısını çıkarın.
x^{2}-15-2x=0
-9 sayısından 6 sayısını çıkarıp -15 sonucunu bulun.
x^{2}-2x-15=0
ax^{2}+bx+c=0 biçimindeki tüm denklemler, ikinci dereceden denklem formülü kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. İkinci dereceden denklem formülü, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-15\right)}}{2}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden denklem formülünde a yerine 1, b yerine -2 ve c yerine -15 değerini koyarak çözün.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-15\right)}}{2}
-2 sayısının karesi.
x=\frac{-\left(-2\right)±\sqrt{4+60}}{2}
-4 ile -15 sayısını çarpın.
x=\frac{-\left(-2\right)±\sqrt{64}}{2}
60 ile 4 sayısını toplayın.
x=\frac{-\left(-2\right)±8}{2}
64 sayısının karekökünü alın.
x=\frac{2±8}{2}
-2 sayısının tersi: 2.
x=\frac{10}{2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{2±8}{2} denklemini çözün. 8 ile 2 sayısını toplayın.
x=5
10 sayısını 2 ile bölün.
x=-\frac{6}{2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{2±8}{2} denklemini çözün. 8 sayısını 2 sayısından çıkarın.
x=-3
-6 sayısını 2 ile bölün.
x=5 x=-3
Denklem çözüldü.
x=5
x değişkeni -3 değerine eşit olamaz.
x^{2}-9=2\left(x+3\right)
Sıfıra bölünme tanımlı olmadığından x değişkeni, -3 değerine eşit olamaz. Denklemin her iki tarafını 2\left(x+3\right) ile çarpın.
x^{2}-9=2x+6
2 sayısını x+3 ile çarpmak için dağılma özelliğini kullanın.
x^{2}-9-2x=6
Her iki taraftan 2x sayısını çıkarın.
x^{2}-2x=6+9
Her iki tarafa 9 ekleyin.
x^{2}-2x=15
6 ve 9 sayılarını toplayarak 15 sonucunu bulun.
x^{2}-2x+1=15+1
x teriminin katsayısı olan -2 sayısını 2 değerine bölerek -1 sonucunu elde edin. Sonra, denklemin her iki tarafına -1 sayısının karesini ekleyin. Bu adım, denklemin sol tarafının tam kare olmasını sağlar.
x^{2}-2x+1=16
1 ile 15 sayısını toplayın.
\left(x-1\right)^{2}=16
Faktör x^{2}-2x+1. Genel olarak, x^{2}+bx+c bir kare olduğunda, her zaman kare olarak \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{16}
Denklemin her iki tarafının kare kökünü alın.
x-1=4 x-1=-4
Sadeleştirin.
x=5 x=-3
Denklemin her iki tarafına 1 ekleyin.
x=5
x değişkeni -3 değerine eşit olamaz.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}