Ana içeriğe geç
x için çözün
Tick mark Image
Grafik

Web Aramasından Benzer Problemler

Paylaş

x-1=2x\left(-x+2\right)-x+2
Sıfıra bölünme tanımlı olmadığından x değişkeni, 2 değerine eşit olamaz. Denklemin her iki tarafını -x+2 ile çarpın.
x-1=-2x^{2}+4x-x+2
2x sayısını -x+2 ile çarpmak için dağılma özelliğini kullanın.
x-1=-2x^{2}+3x+2
4x ve -x terimlerini birleştirerek 3x sonucunu elde edin.
x-1+2x^{2}=3x+2
Her iki tarafa 2x^{2} ekleyin.
x-1+2x^{2}-3x=2
Her iki taraftan 3x sayısını çıkarın.
-2x-1+2x^{2}=2
x ve -3x terimlerini birleştirerek -2x sonucunu elde edin.
-2x-1+2x^{2}-2=0
Her iki taraftan 2 sayısını çıkarın.
-2x-3+2x^{2}=0
-1 sayısından 2 sayısını çıkarıp -3 sonucunu bulun.
2x^{2}-2x-3=0
ax^{2}+bx+c=0 biçimindeki tüm denklemler, karesel formül kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Karesel formül, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden formülünde a yerine 2, b yerine -2 ve c yerine -3 değerini koyarak çözün.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-3\right)}}{2\times 2}
-2 sayısının karesi.
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-3\right)}}{2\times 2}
-4 ile 2 sayısını çarpın.
x=\frac{-\left(-2\right)±\sqrt{4+24}}{2\times 2}
-8 ile -3 sayısını çarpın.
x=\frac{-\left(-2\right)±\sqrt{28}}{2\times 2}
24 ile 4 sayısını toplayın.
x=\frac{-\left(-2\right)±2\sqrt{7}}{2\times 2}
28 sayısının karekökünü alın.
x=\frac{2±2\sqrt{7}}{2\times 2}
-2 sayısının tersi: 2.
x=\frac{2±2\sqrt{7}}{4}
2 ile 2 sayısını çarpın.
x=\frac{2\sqrt{7}+2}{4}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{2±2\sqrt{7}}{4} denklemini çözün. 2\sqrt{7} ile 2 sayısını toplayın.
x=\frac{\sqrt{7}+1}{2}
2+2\sqrt{7} sayısını 4 ile bölün.
x=\frac{2-2\sqrt{7}}{4}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{2±2\sqrt{7}}{4} denklemini çözün. 2\sqrt{7} sayısını 2 sayısından çıkarın.
x=\frac{1-\sqrt{7}}{2}
2-2\sqrt{7} sayısını 4 ile bölün.
x=\frac{\sqrt{7}+1}{2} x=\frac{1-\sqrt{7}}{2}
Denklem çözüldü.
x-1=2x\left(-x+2\right)-x+2
Sıfıra bölünme tanımlı olmadığından x değişkeni, 2 değerine eşit olamaz. Denklemin her iki tarafını -x+2 ile çarpın.
x-1=-2x^{2}+4x-x+2
2x sayısını -x+2 ile çarpmak için dağılma özelliğini kullanın.
x-1=-2x^{2}+3x+2
4x ve -x terimlerini birleştirerek 3x sonucunu elde edin.
x-1+2x^{2}=3x+2
Her iki tarafa 2x^{2} ekleyin.
x-1+2x^{2}-3x=2
Her iki taraftan 3x sayısını çıkarın.
-2x-1+2x^{2}=2
x ve -3x terimlerini birleştirerek -2x sonucunu elde edin.
-2x+2x^{2}=2+1
Her iki tarafa 1 ekleyin.
-2x+2x^{2}=3
2 ve 1 sayılarını toplayarak 3 sonucunu bulun.
2x^{2}-2x=3
Buna benzer karesel denklemler, kareyi tamamlayarak çözülebilir. Kareyi tamamlamak için denklemin x^{2}+bx=c biçiminde olması gerekir.
\frac{2x^{2}-2x}{2}=\frac{3}{2}
Her iki tarafı 2 ile bölün.
x^{2}+\left(-\frac{2}{2}\right)x=\frac{3}{2}
2 ile bölme, 2 ile çarpma işlemini geri alır.
x^{2}-x=\frac{3}{2}
-2 sayısını 2 ile bölün.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{2}\right)^{2}
x teriminin katsayısı olan -1 sayısını 2 değerine bölerek -\frac{1}{2} sonucunu elde edin. Sonra, denklemin her iki tarafına -\frac{1}{2} sayısının karesini ekleyin. Bu adım, denklemin sol tarafının tam kare olmasını sağlar.
x^{2}-x+\frac{1}{4}=\frac{3}{2}+\frac{1}{4}
-\frac{1}{2} kesrinin karesini almak için hem payın hem de paydanın karesini alın.
x^{2}-x+\frac{1}{4}=\frac{7}{4}
Ortak paydayı bularak ve payları toplayarak \frac{3}{2} ile \frac{1}{4} sayısını toplayın. Daha sonra mümkünse kesri en küçük terimlere sadeleştirin.
\left(x-\frac{1}{2}\right)^{2}=\frac{7}{4}
x^{2}-x+\frac{1}{4} ifadesini çarpanlarına ayırın. Genellikle x^{2}+bx+c tam kare olduğunda her zaman \left(x+\frac{b}{2}\right)^{2} şeklinde çarpanlara ayrılabilir.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{7}{4}}
Denklemin her iki tarafının kare kökünü alın.
x-\frac{1}{2}=\frac{\sqrt{7}}{2} x-\frac{1}{2}=-\frac{\sqrt{7}}{2}
Sadeleştirin.
x=\frac{\sqrt{7}+1}{2} x=\frac{1-\sqrt{7}}{2}
Denklemin her iki tarafına \frac{1}{2} ekleyin.