Ana içeriğe geç
x için çözün
Tick mark Image
Grafik

Web Aramasından Benzer Problemler

Paylaş

x^{2}-5x+4=0
Sıfıra bölünme tanımlı olmadığından x değişkeni, -1 değerine eşit olamaz. Denklemin her iki tarafını \left(x+1\right)^{2} ile çarpın.
a+b=-5 ab=4
Denklemi çözmek için x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) formülünü kullanarak x^{2}-5x+4 ifadesini çarpanlarına ayırın. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
-1,-4 -2,-2
ab pozitif olduğundan a ve b aynı işarete sahip. a+b negatif olduğundan a ve b her ikisi de negatiftir. Çarpımı 4 olan tam sayı çiftlerini listeleyin.
-1-4=-5 -2-2=-4
Her çiftin toplamını hesaplayın.
a=-4 b=-1
Çözüm, -5 toplamını veren çifttir.
\left(x-4\right)\left(x-1\right)
Alınan değerleri kullanarak çarpanlarına ayrılmış \left(x+a\right)\left(x+b\right) ifadesini yeniden yazın.
x=4 x=1
Denklem çözümlerini bulmak için x-4=0 ve x-1=0 çözün.
x^{2}-5x+4=0
Sıfıra bölünme tanımlı olmadığından x değişkeni, -1 değerine eşit olamaz. Denklemin her iki tarafını \left(x+1\right)^{2} ile çarpın.
a+b=-5 ab=1\times 4=4
Denklemi çözmek için sol tarafı gruplandırarak çarpanlarına ayırın. Öncelikle sol tarafın x^{2}+ax+bx+4 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
-1,-4 -2,-2
ab pozitif olduğundan a ve b aynı işarete sahip. a+b negatif olduğundan a ve b her ikisi de negatiftir. Çarpımı 4 olan tam sayı çiftlerini listeleyin.
-1-4=-5 -2-2=-4
Her çiftin toplamını hesaplayın.
a=-4 b=-1
Çözüm, -5 toplamını veren çifttir.
\left(x^{2}-4x\right)+\left(-x+4\right)
x^{2}-5x+4 ifadesini \left(x^{2}-4x\right)+\left(-x+4\right) olarak yeniden yazın.
x\left(x-4\right)-\left(x-4\right)
İlk grubu x, ikinci grubu -1 ortak çarpan parantezine alın.
\left(x-4\right)\left(x-1\right)
Dağılma özelliği kullanarak x-4 ortak terimi parantezine alın.
x=4 x=1
Denklem çözümlerini bulmak için x-4=0 ve x-1=0 çözün.
x^{2}-5x+4=0
Sıfıra bölünme tanımlı olmadığından x değişkeni, -1 değerine eşit olamaz. Denklemin her iki tarafını \left(x+1\right)^{2} ile çarpın.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
Bu denklem standart biçimdedir: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} ikinci dereceden formülünde a yerine 1, b yerine -5 ve c yerine 4 değerini koyarak çözün.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
-5 sayısının karesi.
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
-4 ile 4 sayısını çarpın.
x=\frac{-\left(-5\right)±\sqrt{9}}{2}
-16 ile 25 sayısını toplayın.
x=\frac{-\left(-5\right)±3}{2}
9 sayısının karekökünü alın.
x=\frac{5±3}{2}
-5 sayısının tersi: 5.
x=\frac{8}{2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{5±3}{2} denklemini çözün. 3 ile 5 sayısını toplayın.
x=4
8 sayısını 2 ile bölün.
x=\frac{2}{2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{5±3}{2} denklemini çözün. 3 sayısını 5 sayısından çıkarın.
x=1
2 sayısını 2 ile bölün.
x=4 x=1
Denklem çözüldü.
x^{2}-5x+4=0
Sıfıra bölünme tanımlı olmadığından x değişkeni, -1 değerine eşit olamaz. Denklemin her iki tarafını \left(x+1\right)^{2} ile çarpın.
x^{2}-5x=-4
Her iki taraftan 4 sayısını çıkarın. Bir sayı sıfırdan çıkarılırsa sonuç o sayının negatifine eşit olur.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
x teriminin katsayısı olan -5 sayısını 2 değerine bölerek -\frac{5}{2} sonucunu elde edin. Sonra, denklemin her iki tarafına -\frac{5}{2} sayısının karesini ekleyin. Bu adım, denklemin sol tarafının tam kare olmasını sağlar.
x^{2}-5x+\frac{25}{4}=-4+\frac{25}{4}
-\frac{5}{2} kesrinin karesini almak için hem payın hem de paydanın karesini alın.
x^{2}-5x+\frac{25}{4}=\frac{9}{4}
\frac{25}{4} ile -4 sayısını toplayın.
\left(x-\frac{5}{2}\right)^{2}=\frac{9}{4}
x^{2}-5x+\frac{25}{4} ifadesini çarpanlarına ayırın. Genellikle x^{2}+bx+c tam kare olduğunda her zaman \left(x+\frac{b}{2}\right)^{2} şeklinde çarpanlara ayrılabilir.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Denklemin her iki tarafının kare kökünü alın.
x-\frac{5}{2}=\frac{3}{2} x-\frac{5}{2}=-\frac{3}{2}
Sadeleştirin.
x=4 x=1
Denklemin her iki tarafına \frac{5}{2} ekleyin.