x için çöz
x\in \left(-\frac{2}{3},4\right)
Grafik
Paylaş
Panoya kopyalandı
3x+2>0 3x+2<0
Sıfıra bölme tanımlanmadığı için payda 3x+2 sıfır olamaz. İki durum vardır.
3x>-2
3x+2 değerinin pozitif olduğu durumu düşünün. 2 değerini sağ tarafa taşıyın.
x>-\frac{2}{3}
Her iki tarafı 3 ile bölün. 3 pozitif olduğundan eşitsizliğin yönü aynı kalır.
7x<2\left(3x+2\right)
İlk eşitsizlik, 3x+2>0 için 3x+2 ile çarpıldığı yönü değiştirmez.
7x<6x+4
Sağ tarafı çarpın.
7x-6x<4
x içeren koşulları sol tarafa ve diğer tüm koşulları sağ tarafa taşıyın.
x<4
Benzer terimleri birleştirin.
x\in \left(-\frac{2}{3},4\right)
Yukarıdan belirtilen x>-\frac{2}{3} koşulunu düşünün.
3x<-2
Artık 3x+2 negatif olduğunda da bu durumu düşünün. 2 değerini sağ tarafa taşıyın.
x<-\frac{2}{3}
Her iki tarafı 3 ile bölün. 3 pozitif olduğundan eşitsizliğin yönü aynı kalır.
7x>2\left(3x+2\right)
İlk eşitsizlik, 3x+2<0 için 3x+2 ile çarpıldığı yönü değiştirir.
7x>6x+4
Sağ tarafı çarpın.
7x-6x>4
x içeren koşulları sol tarafa ve diğer tüm koşulları sağ tarafa taşıyın.
x>4
Benzer terimleri birleştirin.
x\in \emptyset
Yukarıdan belirtilen x<-\frac{2}{3} koşulunu düşünün.
x\in \left(-\frac{2}{3},4\right)
Son çözüm, elde edilen çözümlerin birleşimidir.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}