m için çözün
m=-26
Paylaş
Panoya kopyalandı
\frac{5}{6}m-\frac{5}{12}-\frac{7}{8}m=\frac{2}{3}
Her iki taraftan \frac{7}{8}m sayısını çıkarın.
-\frac{1}{24}m-\frac{5}{12}=\frac{2}{3}
\frac{5}{6}m ve -\frac{7}{8}m terimlerini birleştirerek -\frac{1}{24}m sonucunu elde edin.
-\frac{1}{24}m=\frac{2}{3}+\frac{5}{12}
Her iki tarafa \frac{5}{12} ekleyin.
-\frac{1}{24}m=\frac{8}{12}+\frac{5}{12}
3 ve 12 sayılarının en küçük ortak katı 12 sayısıdır. \frac{2}{3} ve \frac{5}{12} sayılarını paydası 12 olan kesirlere dönüştürün.
-\frac{1}{24}m=\frac{8+5}{12}
\frac{8}{12} ile \frac{5}{12} aynı paydaya sahip olduğundan paylarını toplayarak toplama işlemi yapabilirsiniz.
-\frac{1}{24}m=\frac{13}{12}
8 ve 5 sayılarını toplayarak 13 sonucunu bulun.
m=\frac{13}{12}\left(-24\right)
Her iki tarafı -\frac{1}{24} değerinin tersi olan -24 ile çarpın.
m=\frac{13\left(-24\right)}{12}
\frac{13}{12}\left(-24\right) değerini tek bir kesir olarak ifade edin.
m=\frac{-312}{12}
13 ve -24 sayılarını çarparak -312 sonucunu bulun.
m=-26
-312 sayısını 12 sayısına bölerek -26 sonucunu bulun.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}