Hesapla
0
Çarpanlara Ayır
0
Paylaş
Panoya kopyalandı
\left(x^{3}-\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}+\frac{3}{2}xy\left(x-\frac{1}{2}y\right)\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
\left(x-\frac{1}{2}y\right)^{3} ifadesini genişletmek için \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} binom teoremini kullanın.
\left(x^{3}-\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}+\frac{3}{2}yx^{2}-\frac{3}{4}xy^{2}\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
\frac{3}{2}xy sayısını x-\frac{1}{2}y ile çarpmak için dağılma özelliğini kullanın.
\left(x^{3}+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}-\frac{3}{4}xy^{2}\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
-\frac{3}{2}x^{2}y ve \frac{3}{2}yx^{2} terimlerini birleştirerek 0 sonucunu elde edin.
\left(x^{3}-\frac{1}{8}y^{3}\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
\frac{3}{4}xy^{2} ve -\frac{3}{4}xy^{2} terimlerini birleştirerek 0 sonucunu elde edin.
\left(x^{3}\right)^{2}-\left(\frac{1}{8}y^{3}\right)^{2}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
\left(x^{3}-\frac{1}{8}y^{3}\right)\left(\frac{1}{8}y^{3}+x^{3}\right) ifadesini dikkate alın. Çarpma şu kural kullanılarak iki kare farkına dönüştürülebilir: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{6}-\left(\frac{1}{8}y^{3}\right)^{2}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
Bir sayının üssünün başka bir sayıya üssünü almak için üsleri çarpın. 2 ile 3 çarpıldığında 6 elde edilir.
x^{6}-\left(\frac{1}{8}\right)^{2}\left(y^{3}\right)^{2}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
\left(\frac{1}{8}y^{3}\right)^{2} üssünü genişlet.
x^{6}-\left(\frac{1}{8}\right)^{2}y^{6}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
Bir sayının üssünün başka bir sayıya üssünü almak için üsleri çarpın. 2 ile 3 çarpıldığında 6 elde edilir.
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
2 sayısının \frac{1}{8} kuvvetini hesaplayarak \frac{1}{64} sonucunu bulun.
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{4}\right)^{3}\left(y^{2}\right)^{3}-x^{6}
\left(-\frac{1}{4}y^{2}\right)^{3} üssünü genişlet.
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{4}\right)^{3}y^{6}-x^{6}
Bir sayının üssünün başka bir sayıya üssünü almak için üsleri çarpın. 3 ile 2 çarpıldığında 6 elde edilir.
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{64}y^{6}\right)-x^{6}
3 sayısının -\frac{1}{4} kuvvetini hesaplayarak -\frac{1}{64} sonucunu bulun.
x^{6}-\frac{1}{64}y^{6}+\frac{1}{64}y^{6}-x^{6}
-\frac{1}{64}y^{6} sayısının tersi: \frac{1}{64}y^{6}.
x^{6}-x^{6}
-\frac{1}{64}y^{6} ve \frac{1}{64}y^{6} terimlerini birleştirerek 0 sonucunu elde edin.
0
x^{6} ve -x^{6} terimlerini birleştirerek 0 sonucunu elde edin.
\frac{\left(\left(2x-y\right)^{3}+6xy\left(2x-y\right)\right)\left(y^{3}+8x^{3}\right)+y^{6}-64x^{6}}{64}
\frac{1}{64} ortak çarpan parantezine alın.
0
Sadeleştirin.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}