Hesapla
-\frac{33}{2}=-16,5
Çarpanlara Ayır
-\frac{33}{2} = -16\frac{1}{2} = -16,5
Grafik
Paylaş
Panoya kopyalandı
\left(x^{2}-1\right)^{2}-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
\left(x+1\right)\left(x-1\right) ifadesini dikkate alın. Çarpma şu kural kullanılarak iki kare farkına dönüştürülebilir: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 sayısının karesi.
\left(x^{2}\right)^{2}-2x^{2}+1-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
\left(x^{2}-1\right)^{2} ifadesini genişletmek için \left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremini kullanın.
x^{4}-2x^{2}+1-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
Bir sayının üssünün başka bir sayıya üssünü almak için üsleri çarpın. 2 ile 2 çarpıldığında 4 elde edilir.
x^{4}-2x^{2}+1-\left(4+4x^{2}+\left(x^{2}\right)^{2}\right)+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
\left(2+x^{2}\right)^{2} ifadesini genişletmek için \left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremini kullanın.
x^{4}-2x^{2}+1-\left(4+4x^{2}+x^{4}\right)+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
Bir sayının üssünün başka bir sayıya üssünü almak için üsleri çarpın. 2 ile 2 çarpıldığında 4 elde edilir.
x^{4}-2x^{2}+1-4-4x^{2}-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
4+4x^{2}+x^{4} tersini bulmak için her terimin tersini bulun.
x^{4}-2x^{2}-3-4x^{2}-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
1 sayısından 4 sayısını çıkarıp -3 sonucunu bulun.
x^{4}-6x^{2}-3-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
-2x^{2} ve -4x^{2} terimlerini birleştirerek -6x^{2} sonucunu elde edin.
-6x^{2}-3+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
x^{4} ve -x^{4} terimlerini birleştirerek 0 sonucunu elde edin.
-6x^{2}-3+\left(3x-\frac{9}{2}\right)\left(2x+3\right)
\frac{3}{2} sayısını 2x-3 ile çarpmak için dağılma özelliğini kullanın.
-6x^{2}-3+6x^{2}-\frac{27}{2}
3x-\frac{9}{2} ile 2x+3 ifadesini çarpmak için dağılma özelliğini kullanın ve benzer terimleri birleştirin.
-3-\frac{27}{2}
-6x^{2} ve 6x^{2} terimlerini birleştirerek 0 sonucunu elde edin.
-\frac{33}{2}
-3 sayısından \frac{27}{2} sayısını çıkarıp -\frac{33}{2} sonucunu bulun.
\frac{2\left(\left(x+1\right)\left(x-1\right)\right)^{2}-2\left(2+x^{2}\right)^{2}+3\left(2x-3\right)\left(2x+3\right)}{2}
\frac{1}{2} ortak çarpan parantezine alın.
-\frac{33}{2}
Sadeleştirin.
Örnekler
İkinci dereceden denklem
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Doğrusal denklem
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eş zamanlı denklem
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Türevleme
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İntegralleme
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitler
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}