Ovrednoti
\frac{14-x}{\left(x-2\right)\left(x+1\right)}
Odvajajte w.r.t. x
\frac{x^{2}-28x+16}{x^{4}-2x^{3}-3x^{2}+4x+4}
Graf
Delež
Kopirano v odložišče
\frac{4\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x-2 in x+1 je \left(x-2\right)\left(x+1\right). Pomnožite \frac{4}{x-2} s/z \frac{x+1}{x+1}. Pomnožite \frac{5}{x+1} s/z \frac{x-2}{x-2}.
\frac{4\left(x+1\right)-5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Ker \frac{4\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} in \frac{5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{4x+4-5x+10}{\left(x-2\right)\left(x+1\right)}
Izvedi množenje v 4\left(x+1\right)-5\left(x-2\right).
\frac{-x+14}{\left(x-2\right)\left(x+1\right)}
Združite podobne člene v 4x+4-5x+10.
\frac{-x+14}{x^{2}-x-2}
Razčlenite \left(x-2\right)\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Če želite prišteti ali odšteti izraze, jih razširite na skupne imenovalce. Najmanjši skupni mnogokratnik x-2 in x+1 je \left(x-2\right)\left(x+1\right). Pomnožite \frac{4}{x-2} s/z \frac{x+1}{x+1}. Pomnožite \frac{5}{x+1} s/z \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(x+1\right)-5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Ker \frac{4\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} in \frac{5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} imata isti imenovalec, jih odštejte tako, da odštejete njihove števce.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4x+4-5x+10}{\left(x-2\right)\left(x+1\right)})
Izvedi množenje v 4\left(x+1\right)-5\left(x-2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x+14}{\left(x-2\right)\left(x+1\right)})
Združite podobne člene v 4x+4-5x+10.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x+14}{x^{2}+x-2x-2})
Uporabite distributivnost tako, da pomnožite vsako vrednost x-2 z vsako vrednostjo x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x+14}{x^{2}-x-2})
Združite x in -2x, da dobite -x.
\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+14)-\left(-x^{1}+14\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
Za kateri koli dve odvedljivi funkciji je odvod kvocienta dveh funkcij imenovalec krat odvod števca minus števec krat odvod imenovalca, vse skupaj pa je deljeno s kvadratom imenovalca.
\frac{\left(x^{2}-x^{1}-2\right)\left(-1\right)x^{1-1}-\left(-x^{1}+14\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Odvod polinoma je vsota odvodov njegovih členov. Odvod katerega koli prostega člena je 0. Odvod člena ax^{n} je nax^{n-1}.
\frac{\left(x^{2}-x^{1}-2\right)\left(-1\right)x^{0}-\left(-x^{1}+14\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Poenostavite.
\frac{x^{2}\left(-1\right)x^{0}-x^{1}\left(-1\right)x^{0}-2\left(-1\right)x^{0}-\left(-x^{1}+14\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Pomnožite x^{2}-x^{1}-2 s/z -x^{0}.
\frac{x^{2}\left(-1\right)x^{0}-x^{1}\left(-1\right)x^{0}-2\left(-1\right)x^{0}-\left(-x^{1}\times 2x^{1}-x^{1}\left(-1\right)x^{0}+14\times 2x^{1}+14\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Pomnožite -x^{1}+14 s/z 2x^{1}-x^{0}.
\frac{-x^{2}-\left(-x^{1}\right)-2\left(-1\right)x^{0}-\left(-2x^{1+1}-\left(-x^{1}\right)+14\times 2x^{1}+14\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Če želite množiti potence iste osnove, seštejte njihove eksponente.
\frac{-x^{2}+x^{1}+2x^{0}-\left(-2x^{2}+x^{1}+28x^{1}-14x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Poenostavite.
\frac{x^{2}-28x^{1}+16x^{0}}{\left(x^{2}-x^{1}-2\right)^{2}}
Združite podobne člene.
\frac{x^{2}-28x+16x^{0}}{\left(x^{2}-x-2\right)^{2}}
Za kakršen koli izraz t, t^{1}=t.
\frac{x^{2}-28x+16\times 1}{\left(x^{2}-x-2\right)^{2}}
Za kakršen koli izraz t, razen 0, t^{0}=1.
\frac{x^{2}-28x+16}{\left(x^{2}-x-2\right)^{2}}
Za kakršen koli izraz t, t\times 1=t in 1t=t.