Skočiť na hlavný obsah
Microsoft
|
Math Solver
Vyriešiť
Cvičenie
Hrať
Témy
Pre-Algebra
Priemer
Režim
Najväčší spoločný činiteľ
Najmenší spoločný násobok
Poradie operácií
Zlomky
Zmiešané zlomky
Rozklad prvočísel
Exponenty
Radikály
Algebra
Kombinovanie podobných výrazov
Riešenie premennej
Činiteľ
Rozšíriť
Vyhodnoťte zlomky
Lineárne rovnice
Kvadratické rovnice
Nerovnice
Systémy rovníc
Matice
Trigonometria
Zjednodušovanie
Hodnotiť
Grafy
Riešenie rovníc
Výpočty
Deriváty
Integrály
Limity
Vstupy algebry
Vstupy trigonometrie
Vstupy počtu
Maticové vstupy
Vyriešiť
Cvičenie
Hrať
Témy
Pre-Algebra
Priemer
Režim
Najväčší spoločný činiteľ
Najmenší spoločný násobok
Poradie operácií
Zlomky
Zmiešané zlomky
Rozklad prvočísel
Exponenty
Radikály
Algebra
Kombinovanie podobných výrazov
Riešenie premennej
Činiteľ
Rozšíriť
Vyhodnoťte zlomky
Lineárne rovnice
Kvadratické rovnice
Nerovnice
Systémy rovníc
Matice
Trigonometria
Zjednodušovanie
Hodnotiť
Grafy
Riešenie rovníc
Výpočty
Deriváty
Integrály
Limity
Vstupy algebry
Vstupy trigonometrie
Vstupy počtu
Maticové vstupy
Základný
algebra
trigonometria
výpočty
Štatistika
matice
Znaky
Vyhodnotiť
0
Kvíz
Limits
\lim_{ x \rightarrow 0 } 5x
Podobné úlohy z hľadania na webe
Prove that for any c \neq 0 \lim_{x \rightarrow c}{h(x)} does not exist and that \lim_{x \rightarrow 0}{h(x)} does exist.
https://math.stackexchange.com/questions/334631/prove-that-for-any-c-neq-0-lim-x-rightarrow-chx-does-not-exist-and
Hint: take one sequence that contains only rationals and another one that contains only irrationals (both tending to c\ne 0). For the case of c=0, you can use e.g. that h is continuous at 0 ...
Proofs regarding Continuous functions 1
https://math.stackexchange.com/questions/526691/proofs-regarding-continuous-functions-1
The proof of part a) needs to be modified a bit. You have used the logic that if N \leq f(x) \leq M then xN \leq xf(x) \leq xM. This holds only when x \geq 0. It is better to change the argument ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Calculate: \lim_{x \to 0 } = x \cdot \sin(\frac{1}{x})
https://math.stackexchange.com/questions/1066434/calculate-lim-x-to-0-x-cdot-sin-frac1x
Your proof is incorrect, cause you used incorrect transform, but it has already been stated. I'll describe way to solve it. \lim_{x \to 0}\frac{\sin(\frac{1}{x})}{\frac{1}{x}} \neq 1 Hint : ...
Prove that f(x) is bounded. Please check my proof.
https://math.stackexchange.com/q/1052420
Here is another approach: Let L_0 = \lim_{x \downarrow 0} f(x), L_\infty = \lim_{x \to \infty} f(x). By definition of the limit we have some \delta>0 and N>0 such that if x \in (0, \delta), ...
Complex Function limit by investigating sequences
https://math.stackexchange.com/questions/1915934/complex-function-limit-by-investigating-sequences
If a limit as z \to 0 exists, one should be able to plug in any sequence \{ z_n \} going to zero and get the same limit. Limits of sequences are generally easier to work with. So in this case if ...
Viac položiek
Zdieľať
Kopírovať
Skopírované do schránky
Podobné problémy
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Späť na začiatok