Skočiť na hlavný obsah
Microsoft
|
Math Solver
Vyriešiť
Cvičenie
Hrať
Témy
Pre-Algebra
Priemer
Režim
Najväčší spoločný činiteľ
Najmenší spoločný násobok
Poradie operácií
Zlomky
Zmiešané zlomky
Rozklad prvočísel
Exponenty
Radikály
Algebra
Kombinovanie podobných výrazov
Riešenie premennej
Činiteľ
Rozšíriť
Vyhodnoťte zlomky
Lineárne rovnice
Kvadratické rovnice
Nerovnice
Systémy rovníc
Matice
Trigonometria
Zjednodušovanie
Hodnotiť
Grafy
Riešenie rovníc
Výpočty
Deriváty
Integrály
Limity
Vstupy algebry
Vstupy trigonometrie
Vstupy počtu
Maticové vstupy
Vyriešiť
Cvičenie
Hrať
Témy
Pre-Algebra
Priemer
Režim
Najväčší spoločný činiteľ
Najmenší spoločný násobok
Poradie operácií
Zlomky
Zmiešané zlomky
Rozklad prvočísel
Exponenty
Radikály
Algebra
Kombinovanie podobných výrazov
Riešenie premennej
Činiteľ
Rozšíriť
Vyhodnoťte zlomky
Lineárne rovnice
Kvadratické rovnice
Nerovnice
Systémy rovníc
Matice
Trigonometria
Zjednodušovanie
Hodnotiť
Grafy
Riešenie rovníc
Výpočty
Deriváty
Integrály
Limity
Vstupy algebry
Vstupy trigonometrie
Vstupy počtu
Maticové vstupy
Základný
algebra
trigonometria
výpočty
Štatistika
matice
Znaky
Vyhodnotiť
5
Kvíz
Limits
5 úloh podobných ako:
\lim_{ x \rightarrow 0 } 5
Podobné úlohy z hľadania na webe
Is \lim_{x\to 0} (x) different from dx
https://math.stackexchange.com/questions/1157952/is-lim-x-to-0-x-different-from-dx
It is confusing because the way derivatives are taught today are different from how it was done back in the 1600s. Back then a derivative was dy/dx, where dy and dx were infinitesimal ...
Calculating the limit: \lim \limits_{x \to 0} \frac{\ln(\frac{\sin x}{x})}{x^2}.
https://math.stackexchange.com/q/1147074
We want L = \lim_{x\to 0} \frac{\ln(\frac{\sin x}{x})}{x^2} Since the top approaches \ln(1) = 0 and the bottom also approaches 0, we may use L'Hopital: L = \lim_{x\to 0}{\frac{(\frac{x}{\sin x})(\frac{x \cos x - \sin x}{x^2})}{2x}} = \lim_{x\to 0}\frac{x \cos x - \sin x}{2x^2\sin x} ...
Left/right-hand limits and the l'Hôpital's rule
https://math.stackexchange.com/q/346759
In this very case it is even simpler: the limit (not one sided!) exists, so you don't even need to split the calculation in two steps! And yes: apply l'Hospital directly to the limit .
Arrow in limit operator
https://math.stackexchange.com/questions/36333/arrow-in-limit-operator
Yes, it means that considers decreasing sequences that converge to 0. I've only once worked with someone who preferred to use the \searrow and \nearrow notation, but it's a good notation in the ...
Prob. 15, Sec. 5.1, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: A bounded function on (0, 1) having no limit as x \to 0
https://math.stackexchange.com/q/2879789
What you did is correct. In order to show that \alpha\neq\beta, suppose otherwise. That is, suppose that \alpha=\beta. I will prove that \lim_{x\to0}f(x)=\alpha(=\beta), thereby reaching a ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Viac položiek
Zdieľať
Kopírovať
Skopírované do schránky
Podobné problémy
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Späť na začiatok